Synthetic Analogues of the Active Sites of Iron–Sulfur Proteins. 14.¹ Synthesis, Properties, and Structures of Bis(o-xylyl- α , α' -dithiolato)ferrate(II,III) Anions, Analogues of Oxidized and Reduced Rubredoxin Sites

R. W. Lane,^{2a} James A. Ibers,^{*2b} R. B. Frankel,^{*2c} G. C. Papaefthymiou,^{2c} and R. H. Holm^{*2a}

Contribution from the Departments of Chemistry, Stanford University, Stanford, California 94305, and Northwestern University, Evanston, Illinois 60201, and the Department of Chemistry and Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. Received June 3, 1976

Abstract: To complete the set of synthetic analogues corresponding to the three known types of active sites in iron-sulfur redox proteins, bis(o-xylyl- α, α' -dithiolato) ferrate(II,III) anions, $[Fe(S_2-o-xyl)_2]^{2--}$, have been prepared and their structures and certain electronic properties determined. These complexes are shown to be related to the active sites of the 1-Fe rubredoxin (Rd) proteins. $(Et_4N)[Fe(S_2-o-xyl)_2]$ crystallizes in the orthorhombic space group C_{2v} ⁹- $Pn2_1a$ of dimensions a = 13.413 (8), b = 29.554 (17), and c = 13.448 (10) Å with Z = 8. Na(Ph₄As)[Fe(S₂-o-xyl)₂] acetonitrile solvate crystallizes in the triclinic space group C_i^{1} - $P\overline{1}$ of dimensions a = 13.67 (1), b = 14.60 (1), c = 11.59 (1) Å, $\alpha = 109.3$ (1), $\beta = 105.6$ (1), and $\gamma = 71.6$ $(1)^{\circ}$ with Z = 2. Both complexes contain high-spin mononuclear anions whose Fe-S₄ coordination units are degraded from T_d symmetry by rhombic distortions. Solution absorption spectra of $[Fe(S_2-o-xyl)_2]^- (\lambda_{max} 354, 486, -640-690 \text{ nm})$ and $[Fe(S_2-o-xyl)_2]^2-(\lambda_{max} 322, \sim 355, 1800 \text{ nm})$ resemble those of Rd_{ox} and Rd_{red}, respectively. The same comment applies to Mössbauer parameters (isomer shift, quadrupole splitting) at 77 K: [Fe(S₂-o-xyl)₂]⁻, 0.13, 0.57 mm/s; [Fe(S₂-o-xyl)₂]²⁻, 0.61, 3.28 mm/s. Internal hyperfine magnetic field data are also presented for these two complexes. As for Rd_{red} the ground state of $[Fe(S_2-o-xyl)_2]^{2-}$ has d_{z^2} symmetry and is separated from the next orbital state by ~900 cm⁻¹. Comparison of structural and collective electronic properties with those of the proteins indicates an extent of correspondence sufficient to designate $[Fe(S_2-o-xyl)_2]^-$ and $[Fe(S_2-o-xyl)_2]^{2-}$ as analogues of the active sites of Rd_{ox} and Rd_{red} , respectively. Analogue structures are considered to represent close approaches to unconstrained protein site stereochemistries; further comparison between $[Fe(S_2-o-xyl)_2]^-$ and Rd_{ox} awaits final refinement of the protein structure. Also prepared in this work are salts of $[M_2(S_2-o-xyl)_2]^$ xyl_{3}^{2-} , M = Fe(II) and Ni(II), and $[Co(S_{2}-o-xyl_{2})^{2-}$. The spectrum of the latter together with published data is used to demonstrate the weak ligand field nature of S_{2} -o-xyl²⁻, which is comparable to that of N_{3}^{-} , OH⁻, and -NCO⁻. Comparison of the two analogue structures allows an estimate of structural change at the Rd site in the absence of protein constraints accompanying the reaction $Rd_{ox} + e^- \rightleftharpoons Rd_{red}$. An Fe-S bond distance increase of 0.1 Å upon reduction is indicated. Factors relevant to the enthalpic structural barriers to electron transfer in Rd proteins and analogues are briefly discussed.

One of the principal goals of our research program concerning synthetic analogues^{3,4} of the active sites of iron-sulfur proteins^{5,6} is the preparation and full structural and electronic characterization of analogues corresponding to proteins in all of their physiologically significant oxidation levels. For 2-Fe ([Fe₂S₂(S-Cys)₄]) and 4-Fe ([Fe₄S₄(S-Cys)₄]) active sites and their analogues, in which thiolate ligands simulate terminal cysteinate coordination in the proteins, the following oxidation level equivalencies have been experimentally established.⁷ $[Fe_2S_2(SR)_4]^{2-} \equiv 2$ -Fe Fd_{ox};^{1,3,4} $[Fe_4S_4(SR)_4]^{2-} \equiv 4$ -,8-Fe Fd_{ox}, HP_{red};^{3,4} $[Fe_4S_4(SR)_4]^{3-} \equiv 4$ -,8-Fe Fd_{red}, HP_{s-red}.^{3,4} Binuclear dianions and tetranuclear dianions and trianions have been isolated, electronic structures investigated in some detail,^{1,4,8} and precise structures of representative 4-Fe⁹ and 2-Fe¹⁰ species determined. The indicated oxidation level equivalencies are particularly useful in the 4-Fe case, inasmuch as the electronically delocalized nature of the Fe_4S_4 core prevents recognition of integral Fe(II,III) valence states by spectroscopic^{8a} or diffraction methods.^{6,9}

The third type of recognized active site ($[Fe(S-Cys)_4]$) in iron-sulfur redox proteins is found in the 1-Fe proteins, rubredoxins,^{5,6,11} obtained from bacteria. The molecular weights of these proteins are typically about 6000; Rd from the aerobe *Pseudomonas oleovorans* has a molecular weight of 19 000 and can be obtained in a 1-Fe or 2-Fe form.¹² The latter appears to contain two noninteracting $[Fe(S-Cys)_4]$ sites similar to the single sites in the smaller proteins. The presence of only one iron atom per site renders an electronic description of the site somewhat simpler than for the 2-Fe and 4-Fe cases. Magnetic susceptibility¹³ and a variety of spectroscopic results, including optical absorption,^{11a,14,15} MCD,^{11a,16} EPR,¹⁷ and Mössbauer^{13,18} data, have demonstrated that the two redox states of these proteins, Rd_{ox} and Rd_{red} , coupled by one-electron transfer at $E_0' \sim -0.04$ to -0.06 V, ^{12a,14a} contain Fe(III) and Fe(II), respectively. The results of many of the physical studies on Rd proteins are summarized elsewhere.^{11a} The x-ray structural determination of Clostridium pasteurianum Rdox has progressed through a series of refinements,^{6,19} with the latest published results obtained at 1.5-Å resolution. The active site structure is described as a severely distorted Fe(III)-S₄ tetrahedron with one unusually short (2.05 Å) Fe-S bond. Pronounced ligand field rhombicity has been detected by a number of spectroscopic measurements on both the oxidized and reduced forms.^{1)a}

Attainment of minimal analogues for the active sites of Rd proteins requires synthesis and characterization of tetrakis(thiolato)iron(II) and -(III) complexes, preferably derived from aliphatic $(-CH_2S^-)$ ligands. Obligatory analogue properties include overall tetrahedral stereochemistry effected by the same ligand set in both oxidation levels and demonstrable interconversion between these levels, thereby defining the simple two-membered electron-transfer series

$$[\operatorname{Fe}(\operatorname{SR})_4]^- \equiv \operatorname{Rd}_{\operatorname{ox}} \stackrel{+e^-}{\underset{-e^-}{\rightleftharpoons}} [\operatorname{Fe}(\operatorname{SR})_4]^{2-} \equiv \operatorname{Rd}_{\operatorname{red}}$$

Discrete tetrahedral Fe(II,III)-S₄ complexes which are well

Formula [N(C, H_s),] [Fet(SCH_s), C, H_s),] Na[As(C_s H_s,] [Fet(SCH_s), C, H_s),] · 2CH_s(C, C_s, H_s, AFEN, NAS, C_s, H_s, AFEN, NAS, C_s, H_s, AFEN, NAS, SAS Mol. wt 522,65 80.035 a, A 13.413 (8) 13.67 (1) b, A 29,554 (17) 14.60 (1) c, A 13.448 (10) 11.59 (1) a, deg 103.418 (10) 11.59 (1) g, deg 71.6 (1) 71.6 (1) Y, A's 5331 2036 Z 80.025 (1.39 (3)) Space group 1.392 (1) (1.10) Crystal shape C ₁ ·P1, (01),		$[Fe(S_2 - o - xyl)_2]$	$[\operatorname{Fe}(S_2 - o - xyl)_2]^2$
	Formula	$[N(C_2H_5)_4] [Fe((SCH_2)_2C_6H_4)_2]$	Na $[As(C_6H_5)_4]$ [Fe((SCH ₂) ₂ C ₆ H ₄) ₂] · 2CH ₃ CN
a, A 13413 (8) 16.7 (1) b, A 29.534 (17) 14.60 (1) c, A 13448 (10) 11.59 (1) a, deg 109.3 (1) 109.3 (1) g, deg 105.6 (1) 17.6 (1) r, deg 105.6 (1) 17.6 (1) r, deg 1302 1.37 gated, g/cm ³ 1.302 1.33 (3) obsta, g/cm ³ 0.0853 2 Grystal volume, mn ³ 0.0853 1.1302 Crystal volume, mn ³ 0.0853 0.079-0.205 factor, g, em ³ 8.77 0.111, (011), (011) Radiation Mo (k Ka, = 0.70930 A) mono- chromatized from (002) 0.079-0.205 face of mossic graphite 5.77 61.7 Takeoff angle, deg 2.5 6.5 Scan speed 2' in 2/min 6.5 Scan speed 2' in 2/min 6.5 Structure solution MULT AN based on 214 E values 9.0, sk, +1 Data collected h, k, l >0; h, k, l <0 to 25'	Mol wt	522 66	$C_{44}\Pi_{42}ASFell_{2}NaS_{4}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a 8	13413(8)	1367(1)
a, deg $2-5, 2^{-1}(1)$ $1-3, 0(1)$ a, deg $10^{-2}, 3(1)$ $10^{-2}, 3(1)$ a, deg $10^{-2}, 3(1)$ $10^{-2}, 3(1)$ a, deg $10^{-2}, 3(1)$ $10^{-2}, 3(1)$ a, deg $10^{-2}, 3(1)$ $10^{-2}, 5(1)$ γ, deg $71, 6(1)$ $71, 6(1)$ γ, deg $71, 6(1)$ $71, 6(1)$ γ, deg $71, 6(1)$ $71, 6(1)$ γ, deg $71, 6(1)$ $139, 3(1)$ $q_{atcd}, k/cm^3$ 1.302 1.437 $g_{bad}, k/cm^3$ 1.302 1.437 $q_{bad}, k/cm^3$ 00085 0171 C_{ys}, P_{12}, a 0171 $Complex, bounded by (211), (122), (121), (011), (010), (010), (111). runatized from (002) runatized from (002) mil of Ni foil Transmission factors 0.732 - 0.801 0.079 - 0.205 r_{1}, em^{-1} 8.77 61.7 6m wide by 6mm high 24 cm from rec of moscie graphite 32 cm from rystal 6.5 26 in 2/9 min Scan range 0.95^{-1} helom Ka_1 to 0.85^{-2} above 1.4^{-2} below Ka_1 to 1.4$	a, Δ	29.554(17)	14.60 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0, A c 8	13.448(10)	11.50(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e, der	13.448 (10)	109 3 (1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a, deg		109.5(1) 105.6(1)
1, role1, role1, role V, A^2 \$3312036Z82 $d_{catcd, 8}/cm^3$ 1, 3021, 437 $d_{obsd, 8}/cm^3$ 1, 3021, 437 $d_{obsd, 8}/cm^3$ Q_{0} \$571, 39 (3) $g_{pace group}$ $C_{y}^{0} Pn_{2,a}$ Q_{1}/PT $Crystal volume, mm^3$ Q_{0} \$83 Q_{0} (1, 21), (121)	p, deg		71.6(1)
1. A35712030Z82d_cated, g/cm³1.3021.437d_obsd, g/cm³1.3021.39 (3)Space group $C_{\eta}^{-9}P_{1,2,a}$ $O_{1,171}$ Crystal volume, nm³ $O0853$ $O017, (121), (121), (121), (121), (121), (101), (010), (111).$ RadiationMo (K Ka, = 0.70930 Å) mono- chromatized from (002) face of mosaic graphiteCu (N, a, = 1.540562 Å) prefiltered with 1 mil of Ni foilTransmission factors μ, cm^{-1} $0.732 - 0.801$ $0.079 - 0.205$ K, cm ** 8.77 61.7 Receiving aperture 2.5 mm wide by 4.0 mm light $32 cm from crystal$ 6.5 Scan speed 2° in $2/min$ 5° in $2/min$ Scan speed 2° in $2/min$ 5° in $2/min$ Scan speed 55 92 Data collected $h, k, l > 0; h, k, l < 0 to 25^{\circ}$ $h \ge 0, \pm k, \pm 1$ Data used in refinementAll 6941 observations, including Friedle pairs $20, 6^{\circ} - F_{0}^{-2}$ 0.03 Structure solution $MULTAN$ based on 214 E values $W(F_{0}^{-1} - F_{0}^{-1})^{\circ}$ $MULTAN$ based on 214 E values 20.68 $W(F_{0}^{-2} > 3\sigma(F_{0}^{-2}))$ $W(F_{0}^{+}, F_{0}^{-2} > 3\sigma(F_{0}^{-2})$ 0.03 0.05 0.037 $W(F_{0}^{+}, F_{0}^{-2} > 3\sigma(F_{0}^{-2})$ 0.051 0.150 $W(F_{0}^{+}, F_{0}^{-2} > 3\sigma(F_{0}^{-2})$ 0.051 0.150 $W(F_{0}^{+}, F_{0}^{-2} > 3\sigma(F_{0}^{-2})$ 0.051 0.105 $W(W(F_{0}, F_{0}^{-2} > 3\sigma(F_{0}^{-2}))$ 0.051 0.150 $W(W(F_{0$	V A^3	5221	2036
$\begin{array}{cccc} L \\ \hline L $	7	0	2030
a constraint constraint1.3021.39 (3) (2, $y^2 Pn2, a$ (0, 17)Space group Crystal slape $C_{1,y}^2 Pn2, a$ (0, 001) $C_{1,y}^2 P1$ (0, 101), (101), (121), (121), (121), (011), (011)RadiationMo ($\lambda \kappa_a = 0.70930 \lambda$) mono- chromatized from (002) face of mossile graphiteCu ($\lambda \kappa_a = 1.540562 \lambda$) prefiltered with 1 mil of Ni foilTransmission factors μ, cm^{-1} 8.7761.7Receiving aperture2.5 mm wide by 4.0 mm high 2 cm from crystal0.079-0.205 6.5Scan speed 2 finite2' in 20/min Ni 6002' in 20/min 2' in 20/minScan range0.95° below Ka, to 0.85° above Ka, to 0.85° above1.4° below Ka, to 1.4° above Ka, 2' in 20/minBackground counts 2 fin callmin10 s 2 (10, 2)0.5° 20 (110, 1.4° (10, 2))Data collected w w ($k^{(r)}$)MULTAN based on 214 E values 2 w($F_0^{-1} - F_0^{-1}$)MULTAN based on 214 E values 2 (10, 1.4° (F_0^{-1})Function minimized w w ($R(F_1^{-2})$ 0.068 (includes $F_0^{-2} \leq 0$)0.150 ($F_0^{-2} > 3\sigma(F_0^{-2})$) $R(F_1^{-2}) = 5 3\sigma(F_0^{-2})$ 0.0310.105 $R(F_1^{-2}) = 5 3\sigma(F_0^{-2})$ 0.31.1Maximum electron density on final difference map, e_1/λ^3 0.3No. of unobserved relections for $0 < 0.3$ 0.3No. of unobs	$d \rightarrow a/cm^3$	0	2 1 4 2 7
Not the second space $C_{1,2} \cdot \mathcal{P}_{1,2} a$ $C_{1,2} \cdot \mathcal{P}_{1,2} a$ $C_{1,2} \cdot \mathcal{P}_{1,2} a$ Crystal volume, mm³ $OU853$ $OU853$ $OI171$ $OI171$ Crystal shape $Truncated rod with faces \{100\}, (121), (121), (121), (121), (121), (121), (121), (121), (121), (011), (010), (111).O(10), (010), (111), (010), (111).RadiationMo (\Lambda Ka_x = 0.70930 \Lambda) mono-chromatized from (002)Cu (\Lambda Ka_x = 1.540562 \Lambda) prefiltered with 1Transmission factors0.732 - 0.801O.79 - 0.205\mu, cm^{-1}8.7761.7Receiving aperture2.5 mm wide by 4.0 mm high6.5Scan speed2^\circ in 2\theta/\min2^\circ in 2\theta/\minScan range0.95^\circ below Ka_1 to 0.85^\circ aboveL^\circ below Ka_2Background counts10 s10 s2\theta limit, deg5592Data collectedh, k, l > 0; h, k, l < 0 to 25^\circh \ge 0, tk, tlP for calculation of \sigma(F_0^{-2})O.3MULTAN based on 214 E valuesFunction minimizedST2ST2OR^2wI/\sigma^2(F_0^{-1})^\circO.068O.087W(F_0, F_0^{-2} > 3\sigma(F_0^{-2}))O.045O.087W(F_0, F_0^{-2} > 3\sigma(F_0^{-2}))O.051O.102W(F_0, F_0^{-2} > 3\sigma(F_0^{-2}))O.051O.102W(F_0, F_0^{-2} > 3\sigma(F_0^{-2}))O.3I.1Takeoff angle, degS_2OI3Srower SolutionOI3I.1Af (SP4) observations, including F_0^{-2} > 3\sigma(F_0^{-2})O.5<$	dohod g/cm ³	1.502	1.457
SolutionConstrainedConstrainedConstrainedCrystal solume, mm³ 0.085^3 0.171 Crystal shapeTruncated row with faces $ 100 $, $ 001 $, $ 101 $, (010) , (011) , (011) , (011) , (011) , (011) , (011) , (011) , (011) , (011) , (011) , (011) , (011) , (011) , (011) , (110)	Space group	C^{9} Pro C^{3}	(3)
Crystal shapeDotoTruncated rod with faces $ 100 $, $ 010 $, (011) , $(0$	Crystal volume mm ³	0.0853	0.171
$\begin{array}{c} \text{Final starpe} \\ Fin$	Crystal sliape	Truncated rod with faces $\{100\}$	Complex bounded by $(\bar{2}11) = \{110\} = (\bar{1}2\bar{2})$
RadiationMo ($\lambda K_{\alpha_1} = 0.70930 \text{ A}$) mono- chromatized from (002) face of mossic graphiteCu ($\lambda K_{\alpha_1} = 1.540562 \text{ A}$) prefiltered with 1 mil of Ni foilTransmission factors $\mu, \text{ cm}^{-1}$ 0.732–0.8010.079–0.205 61.7Receiving aperture2.5 mm wide by 4.0 mm high 32 cm from crystal61.7 61.7Takeoff angle, deg Scan speed2.5 2' in 20/min6.5 2' in 20/minScan range0.95° below K α_1 to 0.85° above K α_2 1.4° below K α_1 to 1.4° above K α_2 Background counts 20 limit, deg Data collected10 s Friedle pairs92 9.0.33p for calculation of $\sigma(F_0^{-2})$ w No. of variablesAll 6941 observations, including $1/\sigma^2 (F_0^{-2})^2$ 247 unique reflections laving $F_0^{-2} > 3\sigma(F_0^{-2})$ 0.03w w(F^2)0.068 (includes $F_0^{-2} \leq 0$) 0.0510.150 ($F_0^{-2} > 3\sigma(F_0^{-2})$) 0.2100.28 0.021w w(F^2)0.0510.105 0.051error in observation of unit weight1.78 e ² 3.05 eMaximum electron density on final difference map, er/Å ² 0.3 01.1Maximum electron density on final difference map, er/Å ² 0.3 01.12No. with ($F_0^{-2} - F_0^{-2,1} > 0$ $S \sigma(F_0^{-2})$ 0.31.1Maximum electron density on final difference map, er/Å ² 03.05 eNo. with ($F_0^{-2} - F_0^{-2,1} > 0$ $S \sigma(F_0^{-2})$ 0.31.1Maximum electron density on final difference map, er/Å ² 03.05 eNo. with ($F_0^{-2} - F_0^{-2,1} > 0$ $S \sigma(F_0^{-2)}$ 0.3	Ci yolar olapo	$\{010\}, \{001\}, (121), (1\overline{21}), (1\overline{21}), (1\overline{21}), (0\overline{11}), (0\overline$	(011), (010), (111).
Transmission factors μ, cm^{-1} Chromatized from (002) face of mosaic graphitemil of Ni foilTransmission factors μ, cm^{-1} 0.732-0.8010.079-0.205Receiving aperture2.5 mm wide by 4.0 mm high 32 cm from crystal6 mm wide by 6 mm high 24 cm from crystalTakeoff angle, deg Scan speed2.56.5Scan speed2° in 20/min6 mm wide by 6 mm high 24 cm from crystalScan range0.95° below Ka ₁ to 0.85° above1.4° below Ka ₂ to 1.4° above Ka ₂ Background counts10 s9220 limit, deg Data collected5.592Data used in refinementAll 6941 observations, including Friedel pairs249 minque reflections laving $F_0^2 >$ p for calculation of $\sigma(F_0^2)$ 0.030.05Structure solutionMULTAN based on 214 E values $\Sigma w(F_0^2 - F_c^2)^2$ $W(F_0^2 + F_c^2)^2$ No. of variables372208 $R(F^2)$ 0.068 (includes $F_0^2 \le 0$)0.150 ($F_0^2 \ge 3\sigma(F_0^2)$) $w(R(F^2))$ 0.0510.105 $W(F_1^2)$ 0.0510.105 $W(F_1^2)$ 0.0510.105 $W(F_1^2)$ 0.0510.105 $W(F_1^2)$ 0.0510.105 $W(F_1^2)$ 0.0510.105 $W(F_1^2)$ 0.350.35 e $W(F_1^2)$ 0.350.35 e $W(F_1^2)$ 0.350.35 e $W(F_1^2)$ 0.350.35 e $W(F_1^2)$ 0.31.1 $W(F_1^2)$ 0.31.1 $W(F_1^2)$ 0.31.2 <td< td=""><td>Radiation</td><td>Mo (λ K$\alpha_{\rm c} = 0.70930$ Å) mono-</td><td>C_{μ} ($\lambda K \alpha_{\nu} = 1.540562$ Å) prefiltered with 1</td></td<>	Radiation	Mo (λ K $\alpha_{\rm c} = 0.70930$ Å) mono-	C_{μ} ($\lambda K \alpha_{\nu} = 1.540562$ Å) prefiltered with 1
Transmission factors μ, cm^{-1} 0.732-0.8010.079-0.205 61.7Receiving aperture2.5 mm wide by 4.0 mm high 32 cm from crystal61.7Takeoff angle, deg2.56.5Scan speed2° in 22/min2° in 22/minScan speed2° in 22/min2° in 22/minScan range0.95° below Ka ₁ to 0.85° above1.4° below Ka ₁ to 1.4° above Ka ₂ Background counts10 s9220 limit, deg5592Data collectedh, k, l >0; h, k, l <0 to 25°		chromatized from (002) face of mosaic graphite	mil of Ni foil
μ, cm^{-1} 8.7761.7Receiving aperture2.5 mm wide by 4.0 mm ligh 32 cm from crystal6 mm wide by 6 mm ligh 24 cm from crystalTakeoff angle, deg2.56.5Scan speed2° in 2 θ /min2° in 2 θ /minScan range0.95° below K α_1 to 0.85° above1.4° below K α_1 to 1.4° above K α_2 Background counts10 s10 s2 θ limit, deg5592Data collected $h, k, l > 0; h, k, l < 0$ to 25° $h \ge 0, \pm k, \pm l$ Data used in refinementAll 6941 observations, including Friedel pairs2497 unique reflections having $F_0^2 >$ p for calculation of $\sigma(F_0^2)$ 0.030.05Structure solutionMULTAN based on 214 E valuesMULTAN based on 252 E valuesFunction minimized $\Sigma w(F_0^2 - F_c^2)^2$ 208 w $1/\sigma^2(F_0^2)$ 0.05 $w(F^2)$ 0.1050.210 $w(F_1), F_0^2 > 3\sigma(F_0^2)$ 0.051 $w(F), F_0^2 > 3\sigma(F_0^2)$ 0.051 $w(F), F_0^2 - 3\sigma(F_0^2)$ 0.3 $weight$ 0.3Maximum electron density on 	Transmission factors	0.732-0.801	0.079-0.205
Receiving aperture2.5 mm wide by 4.0 mm high 32 cm from crystal6 mm wide by 6 mm high 24 cm from crystalTakeoff angle, deg2.56.5Scan speed 2° in 2θ /min 2° in 2θ /minScan range 0.95° below $K\alpha_1$ to 0.85° above 1.4° below $K\alpha_1$ to 1.4° above $K\alpha_2$ Background counts 10 s 92 Data collected $h, k, l > 0; h, k, l < 0$ to 25° $h \ge 0, \pm k, \pm l$ Data used in refinementAll 6941 observations, including Friedel pairs $3\sigma (F_0^{-2})$ ρ for calculation of $\sigma (F_0^{-2})$ 0.03 0.05 Structure solutionMULTAN based on 214 E valuesMULTAN based on 252 E valuesFunction minimized $w(F_0^{-2} - F_c^{-2})^2$ 208 $R(F^2)$ 0.068 (includes $F_0^{-2} \le 0$) $0.150 (F_0^{-2} > 3\sigma (F_0^{-2}))$ $w(F(F), F_0^{-2} > 3\sigma (F_0^{-2}))$ 0.051 0.105 $w(F(F), F_0^{-2} > 3\sigma (F_0^{-2}))$ 0.051 0.105 $w(F(F), F_0^{-2} > 3\sigma (F_0^{-2}))$ 0.3 1.1 Maximum electron density on final difference map, e/A^3 0.3 1.1 No. of unobserved reflections 0 1029 No. with $F_0^{-2} - F_c^{-1} > 0$ 3 $3\sigma (F_0^{-2})$ No. with $F_0^{-2} - F_c^{-1} > 0$ 3 $3\sigma (F_0^{-3})$ Trends in minimizedNoneWorse at low 2 θ values	μ , cm ⁻¹	8.77	61.7
Takeoff angle, deg2.56.5Scan speed2° in 20/min2° in 20/minScan range0.95° below K α_1 to 0.85° above1.4° below K α_1 to 1.4° above K α_2 Background counts10 s10 s20 limit, deg5592Data collectedh, k, l >0; h, k, l <0 to 25°	Receiving aperture	2.5 mm wide by 4.0 mm high 32 cm from crystal	6 mm wide by 6 mm ligh 24 cm from crystal
Scan speed 2° in $2\theta/\min$ 2° in $2\theta/\min$ 2° in $2\theta/\min$ Scan range 0.95° below $K\alpha_1$ to 0.85° above 1.4° below $K\alpha_1$ to 1.4° above $K\alpha_2$ Background counts 10 s 10 s 10 s $2\theta \lim ti, deg$ 55 92 Data collected $h, k, l > 0; h, k, l < 0$ to 25° $h \ge 0, \pm k, \pm l$ Data used in refinementAll 6941 observations, including 2497 unique reflections having $F_0^2 >$ p for calculation of $\sigma(F_0^2)$ 0.03 0.05 Structure solutionMULTAN based on 214 E valuesMULTAN based on 252 E valuesFunction minimized $\Sigma w(F_0^2 - F_C^2)^2$ $\Sigma w(W_0^1 - W_0^2)^2$ w $1/\sigma^2(F_0^2)$ 0.068 (includes $F_0^2 \le 01$) 0.150 ($F_0^2 \ge 3\sigma(F_0^2)$) $w(F^2)$ 0.045 0.087 0.087 $w(F), F_0^2 \ge 3\sigma(F_0^2)$ 0.051 0.105 0.105 $weight$ 0.3 1.1 $1.78 e^2$ $3.05 e$ $weight$ 0.3 $1.28 e^2$ $3.05 e$ $weight$ 0.3 1.029 $0.38 e^2$ No. of unobserved reflections 0 0.3 1.12 $No. with (F_0^2 - F_0^2 + 2)$ $0.33 e^2$ 1029 No. with (F_0^2 - F_0^2 + 2) $0.33 e^2$ $0.33 e^2$ $No. with (F_0^2 - F_0^2 + 2)$ $0.33 e^2$ $0.33 e^2$ $No. with (F_0^2 - F_0^2 + 2)$ $0.33 e^2$ $0.33 e^2$ $No. with (F_0^2 - F_0^2 + 2)$ $0.33 e^2$ $No. with (F_0^2 - F_0^2 + 2)$ $0.33 e^2$ $No. with (F_0^2 - F_$	Takeoff angle, deg	2.5	6.5
Scan range 0.95° below $K\alpha_1$ to 0.85° above 1.4° below $K\alpha_1$ to 1.4° above $K\alpha_2$ Background counts 10 s 10 s 10 s 2θ limit, deg 55 92 Data collected $h, k, l > 0; h, k, l < 0$ to 25° $h \ge 0, \pm k, \pm l$ Data used in refinementAll 6941 observations, including 2497 unique reflections having $F_0^2 >$ p for calculation of σ (F_0^2) 0.03 0.05 Structure solutionMULTAN based on 214 E valuesMULTAN based on 252 E valuesFunction minimized $\Sigma w(F_0^2 - F_C^2)^2$ $\Sigma w(U_0^1 - U_F_0)^2$ w $1/\sigma^2 (F_0^2)$ 0.068 (includes $F_0^2 \le 0$) $0.150 (F_0^2 > 3\sigma(F_0^2))$ No. of variables 372 208 $R(F^2)$ 0.045 0.087 $wR(F^2)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ weight 0.3 1.1 Maximum electron density on final difference map, e/A^3 0.3 1.12 No. of unobserved reflections 0 0.3 1.029 No. with $ F_0^2 - F_0^2 > 0$ $3 \sigma (F_0^2)$ $3 \sigma (F_0^2)$ No. with $ F_0^2 - F_0^2 > 10$ $3 \sigma (F_0^2)$ $3 \sigma (F_0^2)$ No. with $ F_0^2 - F_0^2 > 10$ $3 \sigma (F_0^2)$ $3 \sigma (F_0^2)$ No. with $ F_0^2 - F_0^2 > 10$ $3 \sigma (F_0^2)$ $3 \sigma (F_0^2)$ No. of unobserved reflections 0 $3 \sigma (F_0^2)$ No. with $ F_0^2 - F_0^2 > 0$ $3 \sigma (F_0^2)$ $3 \sigma (F_0^2)$ No. with $ F_0^2 - F_0^2 > 10$ <td>Scan speed</td> <td>2° in 2θ/min</td> <td>2° in $2\theta/\min$</td>	Scan speed	2° in 2θ /min	2° in $2\theta/\min$
Background counts10 s10 s10 s 2θ limit, deg5592Data collected $h, k, l > 0; h, k, l < 0$ to 25° $h \ge 0, \pm k, \pm l$ Data used in refinementAll 6941 observations, including 2497 unique reflections having $F_0^2 >$ σ (F_0^2)0.03 3σ (F_0^2) p for calculation of σ (F_0^2)0.030.05Structure solutionMULTAN based on 214 E valuesMULTAN based on 252 E valuesFunction minimized $\Sigma w(F_0^2 - F_c^2)^2$ $\Sigma w(W_0^1 - W_c^1)^2$ w $1/\sigma^2 (F_0^2)$ 208 $R(F^2)$ 0.068 (includes $F_0^2 \le 0$)0.150 ($F_0^2 > 3\sigma$ (F_0^2)) $w(F^2)^2$ 0.0450.087 $w(F, F_0^2 > 3\sigma$ (F_0^2)0.0510.105Error in observation of unit1.78 e^23.05 e $weight$ 0.31029No. of unobserved reflections01029No. with $ F_0^2 - F_c^{21} >$ 03 5σ (F_0^2)01029No. with $ F_0^2 - F_c^{21} >$ 0Trends in minimized functionNoneWorse at low 2θ values	Scan range	0.95° below K α_1 to 0.85° above	1.4° below $K\alpha_1$ to 1.4° above $K\alpha_2$
20 limit, deg10 320 limit, deg55Data collectedh, k, l >0; h, k, l <0 to 25°	Background counts	10 s	10 s
Data collected Data used in refinement $h, k, l > 0; h, k, l < 0$ to 25° All 6941 observations, including Friedel pairs $h \ge 0, \pm k, \pm l$ 2497 unique reflections laving $F_0^2 >$ $3\sigma(F_0^2)$ p for calculation of $\sigma(F_0^2)$ 0.03 0.05 Structure solutionMULTAN based on 214 E valuesMULTAN based on 252 E valuesFunction minimized $\Sigma w(F_0^2 - F_c^2)^2$ $\omega (W_0^2 - F_c^2)^2$ w $1/\sigma^2(F_0^2)$ $4F_0^2/\sigma^2(F_0^2)$ No. of variables 372 208 $R(F^2)$ 0.068 (includes $F_0^2 \le 0$) $0.150 (F_0^2 > 3\sigma(F_0^2))$ $wR(F^2)$ 0.045 0.087 $wR(F), F_0^2 > 3\sigma(F_0^2)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ weight 0.3 1.1 Maximum electron density on final difference map, e^{-}/A^3 0 1029 No. with $ F_0^2 - F_c^2 > 0$ $3 < 5 < F_0^2$ No. with $ F_0^2 - F_c^2 > 0$ $3 < 5 < F_0^2$ Trends in minimized functionNoneWorse at low 2θ values	2θ limit, deg	55	92
Data used in refinementAll 6941 observations, including Friedel pairs $n \ge 0, n \land n \ge 0, n \ge 0, n \land n \ge 0, n \ge 0, n \land n \ge 0, n \ge 0,$	Data collected	$h \neq l > 0$ $h \neq l < 0$ to 25°	h > 0 + k + l
Data see in refinenceAll observations, including 24.97 dimensions having $F_0 > 3\sigma(F_0^2)$ p for calculation of $\sigma(F_0^2)$ 0.030.05Structure solutionMULTAN based on 214 E valuesMULTAN based on 252 E valuesFunction minimized $\Sigma w(F_0^2 - F_c^2)^2$ $\Sigma w(W_0^{-1} - W_c)^2$ w $1/\sigma^2(F_0^2)$ $4F_0^2/\sigma^2(F_0^2)$ w $1/\sigma^2(F_0^2)$ 208 $R(F^2)$ 0.068 (includes $F_0^2 \le 0)$ $0.150 (F_0^2 > 3\sigma(F_0^2))$ $wR(F^2)$ 0.045 0.087 $wR(F), F_0^2 > 3\sigma(F_0^2)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ $weight$ 0.3 1.1 Maximum electron density on final difference map, e^2/A^3 0 No. of unobserved reflections 0 1029 No. with $ F_0^2 - F_c^{-2} > 0$ 3 $5\sigma(F_0^2)$ 0 3 Trends in minimized functionNoneWorse at low 2θ values	Data used in refinement	A11 6941 observations including	$n \geq 0, n, n$ 2497 unique reflections having $E^{-2} > 1$
p for carcination of $v(F_0^-)$ 0.030.03Structure solutionMULTAN based on 214 E valuesMULTAN based on 252 E valuesFunction minimized $\Sigma w(F_0^2 - F_c^2)^2$ $\Sigma w(VF_0 - VF_c^-)^2$ w $1/\sigma^2(F_0^2)$ $4F_0^2/\sigma^2(F_0^2)$ No. of variables372208 $R(F^2)$ 0.068 (includes $F_0^2 \le 0$)0.150 $(F_0^2 > 3\sigma(F_0^2))$ $wR(F^2)$ 0.1050.210 $R(F), F_0^2 > 3\sigma(F_0^2)$ 0.0510.105Error in observation of unit1.78 e^23.05 eweight0.31.1Maximum electron density on final difference map, e^{-}/A^3 0No. of unobserved reflections01029No. with $VF_0^2 - F_c^{-2} > 0$ 3 $5\sigma(F_0^2)$ NoneWorse at low 2 θ values	n for calculation of $\sigma (E^{-2})$	Friedel pairs	$3\sigma(F_0^2)$
Structure solutionMOLTAN based on 214 E valuesMOLTAN based on 252 E valuesFunction minimized $\Sigma w(F_0^2 - F_c^2)^2$ $\Sigma w(F_0 - F_c)^2$ w $1/\sigma^2(F_0^2)$ $4F_0^2/\sigma^2(F_0^2)$ No. of variables 372 208 $R(F^2)$ 0.068 (includes $F_0^2 \le 0$) $0.150 (F_0^2 > 3\sigma(F_0^2))$ $wR(F^2)$ 0.045 0.087 $wR(F), F_0^2 > 3\sigma(F_0^2)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ weight 0.3 1.1 Maximum electron density on final difference map, e^2/A^3 0.3 No. of unobserved reflections 0 1029 No. with $ F_0^2 - F_c^2 > 0$ 3 $5\sigma(F_0^2)$ NoneWorse at low 2θ values	p for calculation of $o(F_0)$	0.05 MULTAN besed on 214 Evelves	U.US MULTAN bened on 252 Evolution
Punction minimized $2 w(r_0 - r_c)^2$ $2 w(r_0 - r_c)^2$ w $1/\sigma^2 (F_0^2)$ $4F_0^2/\sigma^2 (F_0^2)$ No. of variables 372 208 $R(F^2)$ 0.068 (includes $F_0^2 \le 0$) $0.150 (F_0^2 > 3\sigma (F_0^2))$ $wR(F), F_0^2 > 3\sigma (F_0^2)$ 0.045 0.087 $wR(F), F_0^2 > 3\sigma (F_0^2)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ weight 0.3 1.1 Maximum electron density on final difference map, e^{-A^3} 0.3 1.029 No. of unobserved reflections 0 $3 - 5\sigma (F_0^2)$ No. with $ F_0^2 - F_c^2 > 0$ $3 - 5\sigma (F_0^2)$ 0.29 Trends in minimized function None Worse at low 2θ values	Function minimized	MULTAN based on 214 E values $\sum m(E_1^2 - E_2^2)^2$	MULIAN based on 252 E values $\sum \frac{1}{2} \frac{1}{$
W $1/\sigma (F_0^{-1})$ $4F_0^{-1}/\sigma^{-1}(F_0^{-1})$ No. of variables 372 208 $R(F^2)$ 0.068 (includes $F_0^2 \le 0$) $0.150 (F_0^2 > 3\sigma(F_0^2))$ $wR(F), F_0^2 > 3\sigma(F_0^2)$ 0.045 0.210 $R(F), F_0^2 > 3\sigma(F_0^2)$ 0.045 0.087 $wR(F), F_0^2 > 3\sigma(F_0^2)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ weight 0.3 1.1 final difference map, e^{-1}/A^3 0.3 1.029 No. of unobserved reflections 0 1029 No. with $ F_0^2 - F_0^2 > 0$ 3 $5\sigma (F_0^2)$ Trends in minimized function None Worse at low 2θ values		$\frac{2}{1} \frac{W(F_0 - F_c)^2}{1/r^2 (E_c^2)}$	$2 W(F_0 - F_0)^2$
NO. Of Valiables $3/2$ 208 $R(F^2)$ 0.068 (includes $F_0^2 \le 0$) $0.150 (F_0^2 > 3\sigma(F_0^2))$ $wR(F^2)$ 0.105 0.210 $R(F), F_0^2 > 3\sigma(F_0^2)$ 0.045 0.087 $wR(F), F_0^2 > 3\sigma(F_0^2)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ weight 1.1 final difference map, e^{-1}/A^3 No. of unobserved reflections 0 1029 No. with $ F_0^2 - F_C^2 > 0$ 0 3 $5\sigma(F_0^2)$ None Worse at low 2θ values	W No of variables	$\frac{1}{\sigma^{-}} (F_{0}^{-})$	$4F_0^2/\sigma^2(F_0^2)$
$R(F')$ 0.008 (includes $F_0^{-1} \le 0$) 0.150 ($F_0^{-2} > 3\sigma(F_0^{-1})$) $wR(F^2)$ 0.105 0.210 $R(F), F_0^2 > 3\sigma(F_0^2)$ 0.045 0.087 $wR(F), F_0^2 > 3\sigma(F_0^2)$ 0.051 0.105 Error in observation of unit 1.78 e ² 3.05 e weight 0.3 1.1 final difference map, e^{-1/A^3} 1029 No. of unobserved reflections 0 3 No. with $ F_0^2 - F_C^2 > 0$ 3 $5\sigma(F_0^2)$ 0 3 Trends in minimized function None Worse at low 2θ values	$D(E^2)$	5/2	208
$WR(r')$ 0.105 0.210 $R(F), F_0^2 > 3\sigma(F_0^2)$ 0.045 0.087 $wR(F), F_0^2 > 3\sigma(F_0^2)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ weight 1.11 Maximum electron density on final difference map, e^{-1}/A^3 1.129 No. of unobserved reflections 0 1029 No. with $ F_0^2 - F_c^2 > 0$ 3 $5\sigma(F_0^2)$ 7 Trends in minimized functionNoneWorse at low 2θ values	K(F) $w P(F^2)$	0.008 (includes $F_0 \leq 0$)	$0.150 (r_0^2 > 30(r_0^2))$
$k(F), F_0 > 3\sigma(F_0^2)$ 0.043 0.087 $wR(F), F_0^2 > 3\sigma(F_0^2)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ weight $Maximum$ electron density on final difference map, e^{-}/A^3 1.1 No. of unobserved reflections 0 1029 No. with $ F_0^2 - F_c^2 > 0$ 3 $5\sigma(F_0^2)$ Trends in minimized functionNoneWorse at low 2θ values	$P(F) = \frac{1}{2} - \frac{1}{2}$	0.105	0.210
$WA(T), T_0 > 36 (T_0)$ 0.051 0.105 Error in observation of unit $1.78 e^2$ $3.05 e$ weight $Maximum electron density onfinal difference map, e^-/A^31.1No. of unobserved reflections01029No. with F_0^2 - F_c^2 > 035\sigma (F_0^2)NoneWorse at low 2\theta values$	$K(F), F_0 > 50(F_0)$	0.045	0.087
weight1.78 e3.05 eMaximum electron density on final difference map, e^{-/A^3} 0.31.1No. of unobserved reflections01029No. with $ F_0^2 - F_c^2 > 0$ 33 5σ (F_0^2)Vorse at low 2 θ values	Error in observation of unit	$1.78 a^2$	2.05
Maximum electron density on final difference map, e^{-/A^3} 1.1No. of unobserved reflections01029No. with $ F_0^2 - F_c^2 > 0$ 3 5σ (F_0^2)Worse at low 2 θ values	weight	1.78 6	5.05 C
No. of unobserved reflections01029No. with $ F_0^2 - F_c^2 > 0$ 3 5σ (F_0^2)Worse at low 20 valuesTrends in minimized functionNone	Maximum electron density on final difference map, e ⁻ /Å ³	0.3	1.1
No. with $ F_0^2 - F_c^2 > 0$ 3 $5\sigma(F_0^2)$ 3Trends in minimized functionNoneWorse at low 2θ values	No. of unobserved reflections	0	1029
Trends in minimized function None Worse at low 20 values	No. with $ F_0^2 - F_c^2 > 5\sigma (F_0^2)$	0	3
-	Trends in minimized function	None	Worse at low 20 values

characterized are not numerous. Among those which may be considered, to varying extents, as models of Rdred sites are Fe[(SPR₂)₂N]₂,^{20a} Fe[(SPR₂)₂CH]₂,^{20b} [Fe(Boc-Gly-(Cys-Gly-Gly)₃-Cys-Gly-NH₂)]^{2-,21} ([iron(12-peptide)]²⁻), bis(dithiosquarate)ferrate(II)²² ([Fe(dts)₂]²⁻), [Fe-(dts)(SPh)₂]^{2-,23} and [Fe(SPh)₄]^{2-,23} The x-ray structure of $Fe[(SPMe_2)_2N]_2$ has been determined^{24,25} and considered as a reasonable stereochemical representation of a Rd_{red} site. None of these Fe(II) complexes has as yet been shown to be oxidizable to the corresponding Fe(III) species. In order to provide Rd_{ox,red} active site analogues with the obligatory properties, we have recently synthesized and characterized bis(o-xylyl- α, α' -dithiolato)ferrate(III) monoanion, [Fe(S₂o-xyl)₂]^{-,26} a Rd_{ox} analogue. Here we report full structural details for this complex and its reduced form, [Fe(S₂-oxyl)₂]²⁻, a Rd_{red} analogue. Also described are certain physical properties of both complexes. These results complete the set of synthetic analogues of the three recognized types of active sites in low molecular weight iron-sulfur redox proteins, and

allow the first assessment of Fe-S analogue stereochemical alterations pursuant to electron transfer.

Experimental Section

Preparation of Compounds. All manipulations were performed under a pure dinitrogen atmosphere and all solvents were carefully degassed prior to use. o-Xylyl- α , α' -dithiol was prepared as previously described¹⁰ and distilled before use. Acetonitrile was purified by distillation from calcium hydride. Other solvents were the best commercial grades available and were not further purified. Bis-(tetraethylammonium)tetrachlorometalate(II) salts of iron, cobalt, and nickel were obtained by published procedures;²⁷ the tetraphenylarsonium iron(II) salt was prepared by an analogous method. The syntheses of tetraethylammonium bis(o-xylyl- α , α' -dithiolato)ferrate(III), (Et₄N)[Fe(S₂-o-xyl)₂], and bis(tetraethylammonium) tris(o-xylyl- α , α' -dithiolato)diferrate(II), (Et₄N)₂[Fe₂(S₂-o-xyl)₃], have been described elsewhere.²⁶

(a) Sodium Tetraphenylarsonium Bis(o-xylyl- α , α' -dithiolato)ferrate(II), Na(Ph₄As)[Fe(S₂-o-xyl)₂]. To a suspension of o-xylyl- α , α' dithiol (7.3 g, 43 mmol) and (Ph₄As)₂(FeCl₄) (12 g, 13 mmol) in 100

Table II. Positional and Thermal Parameters for the Nongroup Atoms of $(Et_4N)[Fe(S_2-o-xyl)_2]$

A70M	A X	Y	Z	8 F11	B22	833	812	813	B23
FE(1)	0.075041(64)	1/4	-0.481960(54)	67.14 (57)	11.59(10)	48.92 (45)).67(21)	1.40 (43)	-2.28(20)
FE (2)	0.054452(55)	-0.004656(36)	-0.056079(64)	45.23 (45)	10.85(10)	78+64(60)	-3.02(19)	-3.55(45)	0.7122)
S(11)	0.10985(15)	(+219721(66)	-0,63276111)	122.1(16)	17.23(25)	50.26194)	14.21(56)	-8.0(10)	-5.26(42)
5(12)	0.10900(14)	0.202100(63)	-0.35565(11)	105.7(15)	16.26(24)	48.94 (90)	3.39 (49)	5.67(95)	2.35139)
S(13)	-0.08904(12)	r.268465(57)	-0,48619112)	61.4(10)	13.36(21)	79.0(11)	-2.25(39)	2.76187)	-2.411411
S(14)	0+16674(11)	0.314167(59)	-0.46041111)	4P.R3 (R9)	13.87(20)	71.0(10)).46(36)	-0.30179)	0.151401
5(21)	-0+09646110)	-0.037708(A1)	-0.08065115)	44.62 (AR)	13.81(22)	124.8(16)	-3.49(37)	5.54197)	-6.391511
5 (22)	0.10110(10)	-0.(53105(57)	-0.08348112)	43.CR(80)	12.00(19)	102.9113)	-0+47(34)	-8.921871	0.94144)
5(23)	0.05429112)	n.u22357(62)	0,10152112)	72.7(11)	13.93122)	70.2(11)	-4.59 (421	-1.80192)	7.08140)
S(24)	0.07304(10)	0.053567(56)	-0.16557(11)	57 . 91(89)	12.38(19)	57,94191)	n.20(36)	-3.061771	-1.02136)
N(1)	0.00271130)	0.35370(14)	-0.17890130)	44.7(27)	13.76(65)	48.5127)	3.9111)	-0.1122)	-0.9112)
N (21	0.14716(30)	-0.39722(15)	-0.50586132)	34.2(25)	14.10(66)	64.2(31)	5.21(1)	-2.0123)	1.41121
C([1)	0.22710(48)	0.19057(20)	-0.61321147)	P4.0(50)	15.39(96)	90.7(51)	5.0118)	29.2141)	3.6118)
C(12)	0.22522146)	n.17502(24)	-0.39562(46)	47.1(46)	26.0113)	83.1150)	6.3120)	-24.1(40)	-1.6(22)
C(13)	-0.08733144)	0.31205(23)	-0.58496141)	69.3(47)	20.3111)	51.3135)	3.0(18)	-15.0(31)	-0.1117)
C(14)	0.11943(41)	0.34984(19)	-0.56292(40)	44 .3 (41)	14.98(88)	62.8(39)	-1.4(16)	[8+6133)	4.1116)
C(21)	-0.07617(40)	-0.(6555(20)	-0,20009(48)	£1.0(39)	12.38182)	97.1(49)	-4.4(15)	-32.0137)	3.9(17)
C122)	0.14410140)	-0.08382(21)	-0.19650145)	55.1(39)	17.45(95)	R4.5146)	-7.1(161	5.5(35)	0.11181
C123)	-0.04549(43)	0.06483(24)	0.08629(47)	55.0(41)	23.1(12)	73.4 (43)	2.3(17)	10+3(34)	-4.2(19)
C (24)	-0.03186145)	0.09133(20)	-0.12865(46)	75.0(45)	15.01(93)	75.8(47)	12.8(17)	-22.5137)	-6.91171
C11A)	0.05388143)	0.38492121)	-0.25049145)	69.9(47)	17.17194)	64.1140)	4.5(17)	18+8(35)	6.8118)
C11B)	0.10933(48)	0.42406122)	-0.20080(59)	\$2.5(51)	15+4(10)	142.3169)	-6.9(20)	38.2(49)	-8.7124)
CL(C)	-0.04163142)	0+31686120)	-0.24340143)	f4.7(40)	16+08(89)	66.3140)	2.0116)	1.6133)	-8.0117)
C(10)	-0.09675146)	0.27937(21)	-0.18669155)	73.4(47)	15.09199)	116+8159)	-6.7118)	6.61431	-2.8121)
CIIE)	0.07671144)	0.33371(23)	-0.10434143)	58.6(39)	20.9111)	65.5(41)	7.7(17)	-14.0134)	2.4118)
C(1F)	0.16163145)	0.30762(23)	-0.15089(48)	57.3(42)	21.2(11)	105+4154)	9.6(181	-5.7139)	9.4122)
C11G)	-0.07549143)	0.37783(21)	-0.11694(42)	42.6(40)	17.27(98)	59.5139)	5.9117)	10.3132)	-5.0116)
C11H)	-0.154(1144)	0.40185(23)	-0.17677(49)	59.9(43)	21.5(12)	104+4(56)	13.9(18)	-11+0(40)	-15.3(22)
C12A)	0.07990152)	-0.42306(24)	-0.57576159)	\$3.2(53)	18.3(11)	111.1.2162)	-7.2(20)	-41.8147)	4.5122)
C128)	0.13202154)	-0+45729(23)	-0.64265153)	1n4.8159)	17+4(11)	110.7161)	12.5121)	-30.3147)	-13.9122)
C12C)	0.21033156)	-0.42861(27)	-0.44429159)	96.2156)	25.2114)	121.1165)	17.1(23)	-31.3(51)	4.2127)
C120)	0.14286169)	-0.45987(27)	-0.37459159)	184.3(93)	24.7(15)	112.2168)	-22.7131)	-36.1164)	26.7127)
C(2E)	0.22208152)	-0.36860(24)	-0.56337152)	79.1(50)	19.2(11)	98.91561	-7.4120)	8.8(44)	-2.0122)
C12F)	0.17432163)	-0.33605126)	-0.63584151)	141.6(60)	22.9113)	75,4151)	17.7128)	28+0151)	7.6(22)
C12G)	0.07968155)	-0.36807(28)	-0.44249(55)	90+1 (55)	27.4 (14)	86.8156)	19.1123)	5.0146)	-3.8124)
C (2H)	0.13999168)	-0.33970(27)	-0.36495(53)	148.3185)	22.9(13)	74.4 (53)	10.9129)	-40.9156)	-8.3(23)

^{*a*} Estimated standard deviations in the least significant figure(s) are given in parentheses in this and all subsequent tables. ^{*b*} The form of the anisotropic thermal ellipsoid is: $\exp[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + 2B_{12}hk + 2B_{13}hl + 2B_{23}kl)]$. The quantities given in the table are the thermal coefficients $\times 10^4$.

ml of ethanol at 0 °C was added slowly with stirring 50 ml of a 1.73 M solution of sodium ethoxide in ethanol. The mixture was warmed to room temperature, sodium chloride was removed by filtration, and the rose-colored filtrate was concentrated in vacuo until crystallization began. After cooling to -20 °C, 6.0 g (52%) of orange, red, and black crystals were collected. Further volume reduction and cooling of the filtrate gave an additional 3.2 g of product, for a total yield of 80%. The crude product was recrystallized from acetonitrile initially at 50 °C, affording large, dark red crystals of the product, whose analysis is suggestive of a diacetonitrile solvate. Anal. Calcd for C₄₄H₄₂As-FeN₂NaS₄: C, 60.00; H, 4.81; As, 8.51; Fe, 6.34; N, 3.18; Na, 2.61; S, 14.56; formula weight 881. Found: C, 59.89; H, 4.89; As, 8.21; Fe, 5.92; N, 3.13; Na, 2.67; S, 13.91; formula weight 853 (from experimental density and crystal data, Table I). The composition of this material is further discussed in the text.

(b) Bis(tetraethylammonium) Bis(o-xylyl- α , α' -dithiolato)ferrate(II), (Et₄N)₂[Fe(S₂-o-xyl)₂]. To a suspension of o-xylyl- α , α' -dithiol (13 g, 77 mmol), (Et₄N)₂(FeCl₄) (10 g, 22 mmol), and anhydrous Et₄NCl (11 g, 66 mmol) in 150 ml of ethanol at 0 °C was added slowly with stirring 100 ml of a 1.50 M solution of sodium ethoxide in ethanol. The mixture was warmed to room temperature, sodium chloride was removed by filtration, and the yellow filtrate was concentrated in vacuo to a thick light-brown oil. The oil was dissolved in excess acetonitrile at room temperature, the solution warmed to 50 °C, and concentrated until crystals began to form. Cooling to -20 °C produced 9.1 g (63%) of small light-orange crystals. Further concentration and cooling of the filtrate gave an additional 4.2 g of product, for a total yield of 92%. The product was purified by recrystallization from hot acetone/acetonitrile to give well-formed brownish-yellow crystals. Anal. Calcd for C₃₂H₅₆FeN₂S₄: C, 58.87; H, 8.66; Fe, 8.55; N, 4.29; S, 19.64. Found: C, 58.63; H, 8.51; Fe, 8.37; N, 4.21; S, 19.51.

Alternatively this compound may be prepared by reaction of $(Et_4N)_2[Fe_2(S_2-o-xyl)_3]^{26}$ with $(Et_4N)_2(S_2-o-xyl)$. The latter salt, generated in situ from the dithiol (1.6 g, 9.6 mmol), anhydrous Et₄NCl (3.2 g, 19 mmol), and sodium ethoxide (19 mmol) in 100 ml of ethanol, was filtered directly into a solution of 2.4 g (2.7 mmol) of $(Et_4N)_2[Fe_2(S_2-o-xyl)_3]$ in 75 ml of acetonitrile at room temperature. The resulting light yellow solution was treated as was the filtrate in the preceding preparation, affording 2.6 g (83%) of product, identical in all respects with the material obtained in that preparation.

(c) Bis(tetraphenylarsonium) $B\bar{s}(o-xylyl-\alpha,\alpha'-dithiolato)ferrate(II)$, (Ph₄As)₂[Fe(S₂-o-xyl)₂]. In a manner analogous to a preceding prep-

Table III. Derived Parameters for the Rigid Group Atoms of (Et₄N)[Fe(S₂-o-xyl)₂]

ATOM	X	¥	2	2 R.A	A70M	X	Y	z	8.8
CIRI	0.21222132)	0.14393(11)	-0,56855129)	4.76(121	C1R3	-0.03291125)	-0.1124101931	-0.18366(27)	3,93(11)
C2R1	0.19785131)	0.10780(15)	-0.63333(20)	6.29(15)	C2R3	-0.10007118)	-0.14783112)	-0,17091(26)	4.38(11)
CJRI	0.18223(34)	0.06449(12)	-0,59582130)	6.21(15)	C3R3	-0.06518125)	•0.191 3 4110)	-0,15214(29)	5.08113)
C4R1	0.18099136)	0.05731(11)	-0.49353132)	6.99(17)	C4R3	0.03687128)	-0.199440196)	-0,146121311	5,33113)
C581	0.19537133)	0.09344(15)	-0.42875121)	6.47(16)	C5R3	0.10403119)	-0.16402113)	=0,158A7(27)	4,781121
C6R1	0.21098132)	0.13675(12)	-0.46676(26)	4,72(121	C6R3	0.06914(23)	+0.12051((1)	-0.17764126)	4,11111
CIAZ	-0.06860(28)	0.35A14(10)	-0.54530(27)	4.06111)	CIR4	-0.00625128)	0.11024110)	0.05320126)	4.12111)
C2R2	-0.15056(21)	0.38438(14)	-0.51885(29)	5.55(14)	C2R4	0.02431130)	0.14016114)	0,12703119)	5.09(13)
C382	-0+13666127)	0+42823(13)	-0.483A3130)	6.18(15)	C3R4	0.05932132)	0+18292113)	0.10134(26)	5.88(15)
C4R2	-0.04081133)	0.44585110)	-0.47526(31)	6.29(15)	C4R4	0.06376131)	0.19576110)	0.00189130)	6.09115)
C5R2	0+04115(24)	0.41961(13)	-0.50170130)	5.04(13)	C5R4	0.03320129)	0.16583113)	-0.07195(20)	5.19113)
C6R2	0.02725123)	n.37575(12)	-0,53672127)	4.03(11)	C684	-0.00181128)	0.12307112)	-0,04630123)	4, 11(11)
				RTGID GROUP		ERS			
GROUP	× ×		c	⁷ c		B DEL7A	EPSILO	N	ETA
RINGI	0.1966	1(20)	0.100621(97)	-n.53104{2	:0)	-0.1697127)	-2,9888	1124)	-1.5848(24)
RING2	-0.0547	1(21)	0.401992(92)	-0,51028(1	71	-2.7265(23)	2,791	123)	-0.0883125)
RING3	0.0019	8(18)	-0.155926(87)	-0.16489{1	5)	-0.1A35120)	2.9648	124)	-3.0825(21)
RING4	0.0287	6(19)	0.152996(91)	0.0275411	9)	2.7530125)	2,8694	121)	-1.5072(23)

 ${}^{a}X_{c}$, Y_{c} , and Z_{c} are the fractional coordinates of the origin of the rigid group. b The rigid group orientation angles delta, epsilon, and eta (radians) have been defined previously: S. J. La Placa and J. A. Ibers, *Acta Crystallogr.*, 18, 511 (1965).

aration, 14.mmol of dithiol, 3.7 mmol of $(Ph_4As)_2(FeCl_4)$, and 11 mmol of anhydrous Ph_4AsCl in 75 ml of ethanol were combined with 50 ml of a 0.52 M solution of sodium ethoxide in ethanol. The thick gum obtained after concentration of the filtrate was extracted with 75 ml of acetonitrile at 50 °C, a small amount of green residue removed by filtration, and the filtrate slowly cooled to room temperature. The resulting red-black crystals were collected, washed with acetone until the washings were very faint yellow, and then washed with 5 ml of cool acetonitrile, affording 0.9 g (20%) of crystals. Anal. Calcd for C₆₄H₅₆As₂FeS₄: C, 66.32; H, 4.87; Fe, 4.82; S, 11.07. Found: C, 66.02; H, 4.98; Fe, 4.80; S, 11.13.

(d) Bis(tetraethylammonium) Bis(o-xylyl- α , α' -dithiolato)cobaltate(II), (Et₄N)₂[Co(S₂-o-xyl)₂]. This preparation followed closely that of the iron(II) analogue, and employed (Et₄N)₂(CoCl₄) (21 mmol), dithiol (74 mmol), Et₄NCl (63 mmol), and 100 ml of a 1.47 M solution of sodium ethoxide in ethanol. The deep blue filtrate was concentrated to dryness in vacuo, the residue was redissolved in acetonitrile at room temperature, and the solution filtered. This solution was warmed to 40 °C and concentrated until crystallization began. Two crops of product were obtained as for the iron(II) analogue, resulting in a total of 13 g (95%). The compound was further purified by recrystallization from acetonitrile/acetone initially at 55 °C, giving aqua-blue crystals. Anal. Calcd for C₃₂H₅₆CoN₂S₄: C, 58.59; H, 8.60; N, 4.27. Found: C, 58.45; H, 8.64; N, 4.27.

(e) Bis(tetraethylammonium) Tris(o-xylyl- α , α' -dithiolato)dinickelate(II), (Et₄N)₂[Ni₂(S₂-o-xyl)₃]. The preceding preparation was followed, using (Et₄N)₂(NiCl₄) (19 mmol), dithiol (65 mmol), Et₄NCl (56 mmol), and 100 ml of a 1.3 M sodium ethoxide solution. The reaction mixture was concentrated to produce a dark red gum. This material was extracted with 200 ml of acetonitrile at 60 °C, the extract filtered, and the filtrate cooled to give 2.1 g of brownish-purple crystals. A second extraction afforded an additional 1.4 g, for a total yield of 43%. Recrystallization of this material from hot acetonitrile yielded the pure product as black crystals. Anal. Calcd for C₄₀H₆₄N₂Ni₂S₆: C, 54.42; H, 7.32; N, 3.17. Found: C, 54.64; H, 7.39; N, 3.22.

Crystal Structure Determinations. Pertinent details on crystal data, collection of intensity data, and course of the refinements are given in Table I. Particulars on methods employed, computer programs used, sources of atomic scattering factors, and related matters have been given previously for related structures.⁹

(a) (Et₄N)[Fe(S₂-o-xyl)₂]. Refinement of this structure presented no problems other than those associated with the unexpectedly large number of independent atoms in the asymmetric unit arising from the presence of two independent cations and anions in the noncentrosymmetric space group $Pn2_3a$, rather than the expected single independent cation and anion in the more common centrosymmetric space group Pnma. The refinement model included anisotropic thermal parameters for all nongroup, nonhydrogen atoms. The four independent phenyl rings were treated as rigid groups²⁸ of D_{6h} symmetry, C-C = 1.392 Å, with individual isotropic thermal parameters. The sense of the polar axis was fixed on the basis of comparison of the Friedel pairs of reflections that would be equivalent in the absence of anomalous scattering. On a difference Fourier map, computed after anisotropic refinement, the positions of all hydrogen atoms could be discerned. These hydrogen atom positions on the methyl, methylene, and phenyl carbon atoms were idealized, utilizing a C-H distance of 0.95 Å and an isotropic thermal parameter for a given H atom that was 1 $Å^2$ greater than the equivalent isotropic thermal parameter of the C atom to which it is attached. The full-matrix least-squares refinements, involving 372 variables and 6941 observations, were carried out by remote hookup to the CDC7600 computer at Lawrence Berkeley laboratory. Final values of the parameters are given in Tables 11 and 111. Idealized positions of the hydrogen atoms are given in Table IV and the root-mean-square amplitudes of vibration in Table V. In Table VI are presented the values of F_0^2 and F_c^2 for the 6941 observations.29

(b) Na(Ph₄As)[Fe(S₂-o-xy])₂] Acetonitrile Solvate. Data collection and refinement of this structure were less satisfactory. A number of crystals was examined photographically and all were found to be highly mosaic and hence unsuitable for a high-precision structure determination. Since no more suitable crystals involving other cations were available at this stage of the research and because of the importance of a stereochemical comparison of the Fe(III)-S₄ and Fe(II)-S₄ units, the structure determination was pursued. The high mosaicity of the chosen crystal with the concomitant necessity for wide scans and a closely positioned counter forced the use of Cu rather than Mo radiation in order to avoid overlapping reflections. The Bragg peaks contained considerable structure, which made accurate centering of the crystal difficult.

With the exception of the location of one of the solvate molecules, the refinement of the structure proceeded smoothly. The other solvate

88

Table VII. Positional and Thermal Parameters for the Nongroup Atoms of Na(Ph₄As)[Fe(S₂-o-xyl)₂] Acetonitrile Solvate

A X	Y	Z	8 B11	822	833	812	B13	823
0.16005113)	0.06252112)	0.41754(16)	46.6113)	59.2(13)	89.1120)	-3.16197)	-5.4112)	-6.3112)
-0.35216(18)	0.29984118)	-0.04062122)	51.4(19)	61.4119)	94.5(29)	3.8(14)	0.0118)	2.1(18)
-0.53195130)	0.38375(29)	-0.08657(38)	57.0132)	57.2(30)	109.3(49)	1.2124)	-5.4131)	2.3130)
-0.33543130)	0.127931301	-0.10569142)	54.6132)	62.5(31)	140.2155)	2,5(25)	-11,3(33)	6.7132)
-0.29998133)	0.33292133)	0.17621(39)	72.3135)	83.8135)	102.6149)	-12,9(28)	-8.2132)	12.61331
-0.25809133)	0.35764133)	-0.13569(39)	73.6136)	84.61361	106.2(51)	-17.6(28)	13.6134)	-2.9(33)
0.46776155)	0.49487154)	0.17643(63)	111.5(64)	115.0(63)	134.8(86)	-26.6(50)	12,3159)	23.8(58)
-0.6054(13)	0.2987112)	-0.2081(14)	80.115)	78.113)	92.(18)	-14,(11)	-27.113)	-12.112)
-0.4509(11)	0.1023(12)	-0.2225114)	58.(12)	90.(15)	78.(18)	-10.(10)	-6.(11)	3.113)
-0.2388112)	0.4366(121	0.2251(15)	86.114)	69.113)	120.(21)	•17,(11)	4.(14)	1.113)
-0.2013(12)	0.4559111)	-0.0132115)	92.115)	61.(12)	120.(201	-14,110)	13.(13)	3.(12)
0.4547111)	0.32281)1)	0.1773112)	205.(15)	232,114)	155.(18)	-96.(11)	-13,(13)	96.(13)
0.54121161	0.5512117)	0.4014119)	139.122)	174,121)	163.(28)	-16,(17)	20.(18)	19.(19)
0.6101121)	0.5333116)	ñ.4791123)	141.129)	94.117)	189.(36)	-33.(18)	64.(26)	-12.(201
0.69981161	0,5053(20)	ō.5799120)	143.120)	274,133)	227.(30)	-85.120)	-107.(21)	143.126)
	A x 0.16005(13) -0.35216(18) -0.53195(30) -0.33543(30) -0.29998(133) -0.25809(13) 0.46776(55) -0.6054(13) -0.4509(11) -0.2388(12) -0.2013(12) 0.4547(11) 0.5412(16) 0.6998(16)	A Y 0.16005113) 0.06252112) -0.35216118) 0.29984118) -0.53195130) 0.38375129) -0.33543130) 0.127931301 -0.29998133) 0.33292133) -0.25809133) 0.35764133) 0.46776155) 0.49487154) -0.6054113) 0.2987112) -0.4509111) 0.1023(12) -0.2388112) 0.4366(121) -0.2013112) 0.4559111) 0.4547111) 0.3228111) 0.5512117) 0.6101121) 0.5333116) 0.5053120)	A Y Z 0.16005113) 0.06252112) 0.41754(16) -0.35216118) 0.29984118) -0.04062122) -0.53195130) 0.38375129) -0.08657(38) -0.33543130) 0.127931301 -0.10569142) -0.29998133) 0.33292133) 0.17621139) -0.25809133) 0.35764133) -0.13569(39) 0.466776155) 0.49487154) 0.17643(63) -0.6054113) 0.2987112) -0.2081114) -0.4509111) 0.1023(12) -0.2251115) -0.4509111) 0.1023(12) -0.2251115) -0.2013112) 0.4559111) -0.0132115) 0.4559111) 0.3228111) 0.1773112) 0.4547111) 0.3228111) 0.4014119) 0.45121161 0.5512117) 0.4014119) 0.6101121) 0.50333116) ñ.4791123) 0.69981161 0.5053120) ñ.5799120)	A Y Z B 0.16005113) 0.06252112) 0.41754(16) 46.6113) -0.35216118) 0.29984118) -0.04062122) 51.4119) -0.53195130) 0.38375129) -0.08657(38) 57.0132) -0.33543130) 0.127931301 -0.10569142) 54.6132) -0.29998133) 0.3292133) 0.17621139) 72.3135) -0.25809133) 0.35764133) -0.13569(39) 73.6136) 0.46776155) 0.49487154) 0.17643(63) 111.5(64) -0.6054113) 0.2987112) -0.2081114) 80.115) -0.4509111) 0.1023(12) -0.225115) 86.114) -0.2013112) 0.4366(121 0.2251115) 86.114) -0.2013112) 0.43659111) -0.0132115) 92.115) 0.4547111) 0.3228111) 0.1773112) 205.115) 0.4547111) 0.3228111) 0.4014119) 139.122) 0.46101121) 0.5333116) ñ.4791123) 141.129) 0.69981161 0.5053120) ñ.5799120) 143.	A XYZB11B220.16005113)0.06252112) $n.41754(16)$ 46.6113)59.2(13)-0.35216118)0.29984118)-0.04062122)51.4119)61.4119)-0.53195130)0.38375129)-0.08657(38)57.0132)57.2(30)-0.33543130)0.127931301-0.10569142)54.6132)62.5131)-0.29998133)0.33292133)0.17621139)72.3135)83.8135)-0.25809133)0.35764133)-0.13569(39)73.6136)84.613610.466776155)0.49487154)0.17643(63)111.5(64)115.0163)-0.6054113)0.2987112)-0.2081114)80.115)78.113)-0.4509111)0.1023(12)-0.225115)86.114)69.113)-0.2013112)0.4366(1210.225115)86.114)69.113)-0.2013112)0.4559111)-0.1032115)92.115)61.(12)0.4547111)0.3228111)0.177312)205.115)232.114)0.4547111)0.5512117)0.4014119)139.122)174.121)0.609811610.5053120) $\tilde{0}.5799120$ 143.120)274.133)	A XYZB B11B22B330.16005113)0.06252112)0.41754(16)46.6113)59.2(13) 89.1120)-0.35216118)0.29984118)-0.04062122) 51.4119) 61.4119) $94.5(29)$ -0.53195130)0.38375129)-0.08657(38) 57.0132) $57.2(30)$ 109.3149)-0.33543130)0.127931301-0.10569142) 54.6132) 62.5131) 140.2155)-0.29998133)0.33292133) 0.17621139) 72.3135) 83.8135) 102.6149)-0.25809133)0.35764133)-0.13569(39) 73.6136) 84.61361 $106.2(51)$ 0.46776155) 0.49487154) $0.17643(63)$ $111.5(64)$ 115.0163) $134.8(86)$ -0.6054113) 0.2987112)-0.2081114) 80.115) 78.113) $92.(181)$ -0.4388112) $0.4366(121)$ 0.2251115) 86.114) 69.113) $120.(21)$ -0.2013112) $0.4366(121)$ 0.225115) 92.115) $61.(12)$ $120.(201)$ 0.4547111) 0.3228111 0.1773112) 205.115) 232.114) $155.(18)$ 0.54121161 0.5512117) 0.4014119) 139.122) 174.121) $163.(28)$ 0.6101121) 0.5053120) $\overline{0.5799120}$ 143.120) 274.133) $227.(30)$	A XYZB11B228338120.16005113)0.06252112)0.41754(16)46.6113)59.2(13)89.1120) -3.16197)-0.35216118)0.29984118)-0.04062122)51.4119)61.4119)94.5(29) $3.8(14)$ -0.53195130)0.38375129)-0.08657(38)57.0132)57.2(30)109.3149) 1.2124)-0.33543130)0.127931301-0.10569142)54.6132)62.5131)140.2155) $2.5(25)$ -0.29998133)0.33292133)0.17621139)72.3135)83.8135)102.6149) $-12.9(28)$ -0.25809133)0.35764133)-0.13569(39)73.6136)84.61361106.2(51) $-17.6(28)$ 0.46576155)0.49487154)0.17643(63)111.5(64)115.0163)134.8(86) $-26.6(50)$ -0.6054113)0.2987112)-0.208114)80.115)78.113)92.(181 -14.111)-0.4509111)0.1023(12)-0.225115)86.114)69.113)120.(21) $-17.(111)$ -0.2013112)0.4366(1210.225115)92.115)61.(12)120.(201 -14.110)0.4559111)-0.0132115)92.115)61.(12)120.(201 -14.110 0.4547111)0.3228111)0.1773112)205.115)232.114)155.(18) -96.111 0.4547111)0.5512117)0.4014119)139.122)174.121)163.(26) -16.117 0.6101121)0.5533160 $\tilde{0}.5799120$)143.120)274.133)227.(30) -85.120)	A XYZB B11B22B33B12B130.16005113)0.06252112)0.41754(16)46.6113)59.2(13)89.1120) -3.16197) -5.4112)-0.35216118)0.29984118)-0.04062122)51.4119)61.4119)94.5(29)3.8(14)0.0118)-0.53195130)0.38375129)-0.08657(38)57.0132)57.2(30)109.3149)1.2124) -5.4131)-0.33543130)0.127931301-0.10569142)54.6132)62.5131)140.2155)2.5(25) -11.3133)-0.29998133)0.33292133)0.17621139)72.3135)83.8135)102.6149) $-12.9(28)$ -8.2132)-0.25809133)0.35764133)-0.13569(39)73.6136)84.61361106.2(51) $-17.6(28)$ 13.6134)0.46776155)0.49487154)0.17643(63)111.5(64)115.0163)134.8(86) $-26.6(50)$ 12.3159)-0.6054113)0.2987112)-0.2081114)80.115)78.113)92.(181 $-14.111)$ $-27.113)$ -0.4509111)0.1023(12)-0.2251115)86.114)69.113)120.(21) $-17.(111$ 4.(14)-0.2013112)0.4356(1210.2251115)92.115)61.(12)120.(201 $-14.110)$ 13.(13)0.4557111)0.3228111)0.1773112)205.115)232.114)155.(18) -96.111 $-13.(13)$ 0.4557111)0.5333116) $\hat{0.4791123}$ 141.129)94.17)189.(36) $-33.(18)$ 64.(26)0.609811610.5053120) $0.$

^a Estimated standard deviations in the least significant figure(s) are given in parentheses in this and all subsequent tables. ^b The form of the anisotropic thermal ellipsoid is: $\exp[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + 2B_{12}hk + 2B_{13}hl + 2B_{23}kl)]$. The quantities given in the table are the thermal coefficients $\times 10^4$.

entity was located without difficulty and refinement led to a reasonable geometry for an acetonitrile molecule. The troublesome solvate molecule could not be located in its entirety. An atom, denoted X, was located at about the same distance from the Na atom as the N atom of the satisfactory acetonitrile molecule, in such a position as to complete a distorted octahedral environment about the Na atom. Atom X, as well as the three nonhydrogen atoms of the well-defined acetonitrile molecule, all displayed electron densities in excess of 2.1 e/Å³ on earlier difference Fourier maps. After anisotropic refinement of all nonhydrogen, nonring atoms (including X and the well-defined acetonitrile molecule) an ensuing difference Fourier map was searched closely for other fragments of the troublesome solvate molecule. The one possibly significant feature on this map is a peak Y of height 1.1 $e/Å^3$ located 1.54 Å from X. Down to a height of 0.3 $e/Å^3$, which is certainly in the noise region, there were no other features on the map that are in the vicinity of atoms X or Y. There are several possible explanations for our difficulties with one of the solvate molecules. (1) The molecule is badly disordered. (2) Atom Y is a composite peak of the CCH₃ portion of an assumed acetonitrile molecule. (3) The molecular species, of which atom X is a part, is not acetonitrile. Explanation 1 seems unlikely in view of the absence of electron density about atom X and atom Y and because of the steric constraints imposed in the cell. Explanation 2 seems unlikely in view of the successful refinement of the other acetonitrile molecule. Explanation 3 can neither be supported nor rejected. The analytical data suggest but do not require the presence of two acetonitrile molecules per Fe atom in the bulk sample (vide infra). It is possible that the crystal chosen for data collection is not representative of the bulk sample. In view of the preparative conditions the ill-defined solvate molecule might be ethanol. But if this is the case, then X is an O atom, Y is the α -C atom, and the methyl group must be disordered. Water is a remote possibility in view of the anhydrous nature of solvents and compounds used in synthesis. If a water molecule were present, then X is an O atom and Y, which is near to the noise level of the difference Fourier map, must be an artifact. In view of the impossibility of resolving this problem with the present data set, the final refinement model involved the assignment of X as an O atom and the neglect of the Y atom. In the final refinement the nonhydrogen, nongroup atoms were refined anisotropically, the six phenyl rings (rings 1 and 2 of the anion and rings 3 through 6 of the Ph_4As^+ cation) were refined as described above. The positions of 36 H atoms (eight on the methylene groups, eight on the phenyl rings of the anion, and 20 on the phenyl rings of Ph_4As^+) were idealized and added as fixed contributions. No attempt was made to locate the H atoms on the CH₃ group of the ordered acetonitrile molecule. Final values of the parameters are given in Tables VII and VIII. Idealized positions for the H atoms may be found in Table IV and the root-mean-square amplitudes of vibration in Table V. Values of $10|F_0|$ and $10|F_c|$ are given in Table IX²⁹ for those reflections used in the refinement.

Other Physical Measurements. Mössbauer measurements were made from 1.4 K to room temperature with a constant acceleration spectrometer. The source (57 Co in Rh) was located in the cryostat and held at the same temperature as the absorber. Measurements were also made with the absorber in external magnetic fields up to 80 kOe with a superconducting magnet operating in a longitudinal configuration. Magnetic susceptibility measurements were carried out with a Superconducting Technology, Inc. susceptometer using HgCo(NCS)₄ as the calibrant. A Princeton Applied Research Model 170 electrochemistry system was employed for polarographic and cyclic voltammetric determinations. Solutions were ~10⁻³ M in sample and 0.05 M in (n-Pr₄N)(ClO₄) or (n-Pr₄N)(PF₆) as supporting electrolyte. Potentials were determined at 25 °C vs. a saturated calomel electrode (SCE) as reference. Electronic spectra were recorded on a Cary Model 14 or 17 spectrophotometer.

Results and Discussion

Synthesis of Fe(II,III)-S₄ Complexes. Other than [iron(12peptide)]²⁻ (generated in solution²¹) and [Fe(SPh)₄]²⁻ (isolated²³ during the course of this work), both of which have tetrahedral stereochemistry, previous investigations of the reactions of Fe(II,III) with thiolate ligands³⁰ have yielded few isolated complexes. Aqueous reactions of Fe(II) with cysteinate and mercaptoacetate yielded solids which are apparently octahedral polymers,³¹ such as has been established for Fe(S- CH_2CO_2)· $H_2O_3^{32}$ The properties of these compounds or Fe(II) species produced in solution in various investigations are not suggestive of the Rdred chromophore. Having previously demonstrated that o-xylyldithiolate affords near-tetrahedral stereochemistry in the 2-Fe(III) analogue $[Fe_2S_2(S_2-o$ $xyl)_2]^{2-,10}$ this ligand was utilized in the synthesis of Fe(II,III) Rd analogues. Its choice in past and present work has been based on its S...S bite distance flexibility, which facilitates formation of tetrahedral angles with retention of normal high-spin Fe-S distances, i.e., in its seven-membered chelate ring no significant angular or distance constraints upon coordination stereochemistry are evident. At least with Fe(III), a less flexible ligand such as 1,2-ethanedithiolate is not suitable and a nontetrahedral binuclear complex, [Fe₂(edt)₄]²⁻, results.^{33,34} Some additional indication that flexible chelating dithiols (HS(CH₂)₄₋₆SH) can form tetrahedral Fe(III) species is afforded by absorption spectral studies in aqueous alkaline

Table VIII. Derived Parameters for the Rigid Group Atoms of $Na(Ph_4As)[Fe(S_2 - o - xyl)_2]$ Acetonitrile Solvate

ATCH	x	Y	Z	2 8+A	ATCH	x	¥	Z	2 B+A
CIRI	-0.621941821	0.219731681	- -ñ.16728(96)	4.53134)	CIR4	0.09006(79)	ō.17328(65)	0,53160188)	4.60(34)
C2R1	-0.71368(72)	0.23891165)	-0.1235(10)	5.66139)	C2R4	0.00398(86)	ō.16688(67)	0.5681110)	6.59142)
C 3R L	-0.73176169)	0.16664188	-0.0836110)	6.53144)	C 3R4	-0.05156(72)	0+52003(90)	0.6465(11)	7.01(46)
C4R1	-0.65810191)	0.07519175)	-0.0874111)	6.88146)	C4R4	-0.02101(84)	ō.33971(71)	0.68829195)	6.27143)
C5R1	-0.56637178)	0.056011611	-0.1312111)	5.95(40)	C5R4	0+06507190)	0.34611163)	0.6518110)	6,11(421
C6R1	-0.54829164)	0.12828179)	-0.17117(96)	4.35(35)	C6R4	0.12060171)	ō.26290(82)	0,5734110)	5.88138)
C1R2	-0.13225(65)	0.41108179)	ñ.1943(10)	4.63(34)	CIR5	0.05916(67)	ō.o2811(74)	0.27182(75)	4.19(34)
C2R2	-0.04765(91)	0.38162186)	ñ.28391(81)	6.30143)	C2R5	Ó.06627168)	•0.07059(63)	0,20045194)	4,99(361
C3R2	0+05430174}	0.35794185)	0.26356(97)	6.50(42)	C3R5	-0.01024(85)	-0.09308(57)	0.09604190)	5.37(38)
C4R2	0.07163165}	0.36372188)	ō.1536(11)	7,22145)	C4R5	-0.093851711	-ō.01687(81)	0.06300179)	5,64(39)
C5R2	-0.012971921	ò.39318(88)	Ō•06390(87)	6.72(45)	C5R5	-0.10096166)	ō.08183(68)	0,13437195)	5.71(39)
C6R2	-0.11491175)	0.41685(77)	ñ+08425(87)	4.48(35)	C6R5	-0.02446(79)	ō•10431 (54)	0.23878(87)	5.04(36)
CIR3	0.26275(68)	0.10472(69)	Ō.38438(95)	3.91(32)	C1R6	0.22643(77)	-0.04791 (62)	0.48471198)	4.69(34)
C2R3	0.24481(63)	0.13816175)	0+27942(83)	4.911351	C2R6	0.21651182)	-0.04535(67)	0.60216(93)	5.90(42)
C 3R 3	0.31865(86)	0.17744178)	0.26210(83)	5.79140)	C 3R6	0.26267192)	-0.12965(89)	0.64680(78)	6.79(44)
C4R3	0.41043174)	0.18328178)	ñ.3497111)	6.02140)	C4R6	0.31875(83)	•0.216521691	0.5740110)	6.28(40)
C5R3	0+42836164)	0.14983(82)	0.45470(91)	6.34(42)	C5R6	0.32867(76)	•0.21908(62)	0.45654195)	5.39(37)
C6R3	0+35452181)	0.11055177)	6+47202 (77)	5.32(38)	C6R6	0.28251(82)	-0.13477(79)	0.41190175)	4.89(361
				RISID GROUP		ERS			
GRCUP	×c		ř.	z c		DELTA	EPSILC	N	ETA
RING 1	-0.6400	2155)	0 • 14746 154 }	-0.12736(6	2)	1,2416(67)	-2,7510	(66)	-0,3821(70)
RING 2	-0.0303	1160)	0.38740148}	0.1739017	0)	=1,1115(96)	2,3519	(67)	-2,2238196)
RING 3	Ò.3365	9 (52)	0.144001451	0.36706(6	5)	1,1241(94)	2,2700	163)	2,7205195)
RING 4	0.0345	2155)	0.25650(55)	0.60995(6	4)	2.4733(67)	-3.0497	(66)	-2.3461(64)
RING 5	-0.0173	5152)	0.00562(52)	0+16741(6	1)	-2,6207162)	2.8744	(59)	2.3458(64)
RING 6	0.2725	9151) -	0.13221(54)	0.5293516	7)	1.237(18)	-1,9493	(63)	•0.825(18

solution,³⁵ which reveal chromophores absorbing near the Rd_{ox} maxima of ~490 and ~380 nm.^{11a,14} However, these species were not isolated or further characterized, nor were complexes of cysteinate and related monocysteinyl peptide ligands,³⁶ whose spectra also show some resemblance to Rd_{ox} .

As indicated in the preparative scheme (1) below and

demonstrated by the structural results which follow, o-xylyl dithiolate affords discrete tetrahedral complexes of both Fe(II) and Fe(III). Of the synthetic procedures explored the use of quaternary salts of tetrachloroferrate(II) as the iron source and anhydrous ethanol as the reaction medium has led to the cleanest reaction systems. Reaction of [FeCl₄]²⁻ with excess o-xyl(SH)₂ (ca. 3.5:1 mol ratio) yields the desired [Fe(S₂o-xyl)₂]²⁻, isolated as three different salts whose colors (brown-yellow to red-black) appear to depend on the cation and the presence of solvate molecules. These salts when finely crushed have similar light orange to yellow colors and all give the same solution absorption spectrum (vide infra), indicative of the presence of Fe(II) only. The use of 2:1 ligand/metal stoichiometry led, unexpectedly, to the formation of $[Fe_2(S_2$ o-xyl)₃]^{2-,26} hereafter considered as a binuclear dianion on the basis of analytical data only. This complex can be converted to the Fe(II) monomer upon treatment with excess thiol, and the monomer reconverted to $[Fe_2(S_2-o-xyl)_3]^{2-}$ in ethanol. In

the latter case 2.0 mmol of the $\text{Et}_4 N^+$ salt was dissolved in 50 ml of absolute ethanol at room temperature. An immediate light yellow to red color change was observed and after ~2 h 70% of the iron was recovered in the form of $(\text{Et}_4N)_2[\text{Fe}_2(\text{S}_2-o-xyl)_3]$, isolated after cooling the solution to -20 °C. Spontaneous conversion to the binuclear dianion does not occur in aprotic solvents such as DMF, Me₂SO, and acetonitrile. Controlled aerial oxidation of the isolated [Fe(S₂-o-xyl)₂]²⁻ anion in solution or, more conveniently for preparative purposes, of the initial reaction filtrate containing this complex, affords [Fe(S₂-o-xyl)₂]⁻, readily isolated as its black Et₄N⁺ salt.²⁶

Structural Descriptions. The crystal structures of $(Et_4N)[Fe(S_2-o-xyl)_2]$ and $Na(Ph_4As)[Fe(S_2-o-xyl)_2]$ acetonitrile solvate have been determined. Crystal data are collected in Table I. Metrical data for anions and cations of both compounds are presented in Tables X-XII.

(a) (Et₄N)[Fe(S₂-o-xyl)₂]. The crystal structure of this compound consists of well-separated cations and anions. A stereoview of the unit cell is presented in Figure 1. Two independent cations and anions are present per unit cell. The Et₄N⁺ cations have their expected geometries (Table XI). The root-mean-square amplitudes of vibration (Table V) suggest some excessive thermal motion of some of the β -C atoms of one cation. Any disorder in these groups is very minor, as judged by the essentially featureless final difference Fourier map. The N-C distances average 1.514 (10) Å and the C-C distances 1.535 (31) Å, where the standard deviations in parentheses are of a single observation as estimated on the assumption that all observations are from the same population. That the standard

Table X. Comparison of $Fe-S_4$ Geometries in $[Fe(S_2-o-xyl)_2]^$ and $[Fe(S_2-o-xyl)_2]^{2-}$

	Fe(III)	Fe(III)	
	anion 1	anion 2	Fe(II)
	Distanc	ze, Å	
Fe-S(1)	2.265 (2)	2.272 (2)	2.378 (5)
Fe-S(2)	2.258 (2)	2.252 (2)	2.324 (5)
Fe-S(3)	2.268 (2)	2.265 (2)	2.347 (5)
Fe-S(4)	2.279 (2)	2.278 (2)	2.376 (6)
$S(1) \cdot \cdot \cdot S(2)$	3.763 (3)	3.751 (3)	3.830 (7)
$S(3) \cdot \cdot \cdot S(4)$	3.704 (3)	3.717 (3)	3.955 (7)
$S(1) \cdot \cdot \cdot S(3)$	3.617 (3)	3.639 (3)	3.834 (7)
$S(1) \cdot \cdot \cdot S(4)$	3.708 (3)	3.708 (3)	3.819 (7)
$S(2) \cdot \cdot \cdot S(3)$	3.740 (3)	3.749 (3)	3.669 (7)
$S(2) \cdot \cdot \cdot S(4)$	3.682 (3)	3.641 (3)	3.961 (7)
S(1) - C(1)	1.812 (6)	1.825 (7)	1.844 (15)
S(2) - C(2)	1.833 (6)	1.839 (6)	1.831 (14)
S(3)-C(3)	1.851 (6)	1.846 (6)	1.813 (16)
S(4) - C(4)	1.848 (6)	1.863 (6)	1.853 (15)
$C(1) - C1R(1,3)^{a}$	1.517 (7)	1.518 (7)	1.479 (25)
C(2) - C6R(1,3)	1.489 (8)	1.500(7)	1.492 (19)
C(3) - C1R(2,4)	1.484 (7)	1.509 (8)	1.496 (20)
C(4) - C6R(2,4)	1.497 (7)	1.506 (7)	1.510 (18)
	Angle,	deg	100 1 10
S(1) - Fe - S(2)	112.60 (8	3) 112.02 (8)	109.1 (2)
S(1) - Fe - S(3)	105.82 (7	106.67(7)	108.5 (2)
S(1) - Fe - S(4)	109.35 (7	(7) 109.16 (7)	106.9 (2)
S(2) = Fe = S(3)	111.44 (7	(1) 112.20(7)	103.5 (2)
S(2) - Fe - S(4)	108.49 (7	7) 106.97 (7)	114.9 (2)
S(3) - Fe - S(4)	109.07 (7	() 109.80 (7)	113.8 (2)
Fe = S(1) = C(1)	103.7 (2)	100.9 (2)	110.6 (5)
Fe-S(2)-C(2)	103.0 (2)	104.2 (2)	108.7 (6)
Fe = S(3) = C(3)	100.0 (2)	97.8 (2)	106.3 (6)
Fe = S(4) = C(4)	101.2 (2)	101.4 (2)	107.1 (6)
S(1) = C(1) = CIR(1,3)	112.0 (4)	109.9 (4)	114.8 (10)
S(2) - C(2) - C6R(1,3)	114.2 (4)	113.5 (4)	114.5 (9)
S(3) = C(3) = C1R(2,4)	112.5 (4)	112.6 (4)	115.2 (9)
S(4) - C(4) - C6R(2,4)	113.6 (3)	111.5 (4)	114.1 (10)
	Dihedral A	ngle, deg	
Fe - S(1) - S(2)	9	2.3 92.7	94.3
Fe = S(3) = S(4)			
Fe-S(1)-S(2)	3	9.8 45.3	20.0
C(1)-C(2)-S(1)-S	(2)		
Fe = S(3) = S(4)	5	38 547	21.4
C(3) - C(4) - S(3) - S(3)	(4)	5.0 54.7	21.4
C(1)-C(2)-S(1)-S(1)	5(2) 7	1 72	68
C(1)-C(2)-R(1,3)			
	7(4)	.0 71	67
C(3) = C(4) = S(3) =	s(+) t	ו/ עו	0 /
1 1 1 1 - 1 1 - 1 - 1 I - 1 - 1 - 1 - 1			

^a The first ring number refers to Fe(III) anion 1 and to Fe(II); the second ring number refers to Fe(III) anion 2.

deviation of the N-C distances estimated in this way is essentially that estimated for an individual N-C distance from the inverse matrix (0.008 Å) implies that these latter estimates are reasonable.

Stereoviews of the two independent anions in the cell are shown in Figure 2A, B. These anions are virtually identical, as can be seen from the stereoviews and the bond distance and angle data in Table X, and possess slightly distorted tetrahedral Fe(III)-S₄ coordination units which are depicted in Figure 3A, B. Inasmuch as the stereochemistry of $[Fe(S_2-o-xyl)_2]^-$ has been discussed previously,²⁶ here considerations are restricted to a summary of its more important structural features: (i) ranges and mean values of Fe-S distances and S-Fe-S angles (both anions) are 2.252 (2)-2.279 (2), 2.267 (3) Å, and 105.82 (7)-112.60 (8), 109.5 (7)°, respectively; (ii) mean values of dihedral angles between FeS₂ planes (both anions) are 92.5°; (iii) from i and ii the Fe(III)-S₄ unit approaches T_d microsymmetry, but its precise symmetry is no higher than rhombic;

Table XI. Cation Geometries in $(Et_4N)[Fe(S_2-o-xyl)_2]$

	Cation 1	Cation 2
	Distance, A	
N-C(A)	1.500 (6)	1.510 (8)
N-C(C)	1.514 (6)	1.505 (7)
N-C(E)	1.530 (6)	1.524 (7)
N-C(G)	1.518 (6)	1.511 (8)
C(A) - C(B)	1.530 (8)	1.524 (9)
C(C) - C(D)	1.535 (8)	1.597 (10)
C(E) - C(F)	1.511 (8)	1.512 (9)
C(G) - C(H)	1.505 (8)	1.565 (10)
	Angle, deg	
C(A) - N - C(C)	104.7 (4)	111.5 (5)
C(A) - N - C(E)	111.2 (4)	111.0 (5)
C(A) - N - C(G)	112.3 (4)	106.3 (5)
C(C) - N - C(E)	110.7 (4)	104.5 (5)
C(C) - N - C(G)	112.4 (4)	112.3 (5)
C(E) - N - C(G)	105.7 (4)	111.3 (5)
N-C(A)-C(B)	114.0 (5)	115.4 (6)
N-C(C)-C(D)	115.1 (5)	111.1 (6)
N-C(E)-C(F)	114.5 (5)	113.6 (6)
N-C(G)-C(H)	114.4 (5)	111.8 (6)

Table XII. Other Distances (Å) and Angles (deg) in $Na(Ph_4As)$ -[Fe(S₂-o-xyl)₂] Acetonitrile Solvate

As-C1R3	1.868 (12)	SN(2) - Na - S(1)'	99.8 (6)
As-C1R4	1.890 (9)	SN(2) - Na - S(1)''	157.2 (6)
As-C1R5	1.905 (8)	SN(2) - Na - S(4)''	105.4 (5)
As-C1R6	1.886 (10)	SN(2) - Na - S(3)'	82.1 (5)
$Na \cdot \cdot \cdot SN(2)$	2.49 (2)	X - Na - S(1)'	152.5 (4)
$Na \cdot \cdot \cdot X$	2.58 (2)	X - Na - S(1)''	78.9 (4)
$Na \cdot \cdot \cdot S(1)^{\prime a}$	2.77(1)	X-Na-S(4)''	114.0 (4)
$Na \cdot \cdot S(1)''$	2.94 (1)	X - Na - S(3)	69.5 (4)
$Na \cdot \cdot \cdot S(4)''$	3.02 (1)	S(1)' - Na - S(1)''	77.2 (2)
$Na \cdot \cdot \cdot S(3)'$	3.31 (1)	S(1)' - Na - S(4)''	82.3 (2)
SN(2) - SC(2)	1.14 (3)	S(1)' - Na - S(3)'	91.3 (2)
SC(2) - SMe(2)	1.51 (3)	S(1)'' - Na - S(4)''	96.7 (2)
C1R3-As-C1R4	106.3 (5)	S(1)'' - Na - S(3)'	75.4 (2)
C1R3-As-C1R5	111.6 (5)	S(3)' - Na - S(4)''	170.8 (3)
C1R3-As-C1R6	108.5 (5)	SN(2) - SC(2) -	177 (3)
C1R4-As-C1R5	107.8 (4)	SMe(2)	
C1R4-As-C1R6	111.9 (5)		
C1R5-As-C1R6	110.7 (4)		
SN(2) - Na - X	96.9 (7)		

^a Primed atoms are at \bar{x} , 1 - y, \bar{z} ; doubly primed atoms are at 1 + x, y, z.

(iv) the anions are dissymmetric^{37a} owing to the nonplanar chair-type conformations of the chelate rings (Figure 2), in which acute FeS₂-C₂S₂ and C₂S₂-C₂Ph dihedral angles (both anions) occur in the ranges 40.0-54.7° and 69-72°, respectively; (v) the mean S...S bite distance and S-Fe-S bite angle (both anions) of 3.734 Å and 110.9°, respectively, compare closely with the corresponding values (3.690 Å, 106.4°) in $[Fe_2S_2(S_2-o-xyl)_2]^{2-;10}$ (vi) the mean Fe-S distance of 2.267 Å together with the corresponding Fe-SR distances in $[Fe_2S_2(S_2-o-xyl)_2]^{2-}$ (2.305 Å) and $[Fe_2S_2(S_2-0-xyl)_2]^{2-}$ (2.305 Å) and $[Fe_2S_2(S_2-0-xyl)_2]^{2-}$ (2.312 Å)¹⁰ define a range of 2.27-2.31 Å for tetrahedral Fe(III)-thiolate sulfur bond distances, which may be expected to apply to other structurally unconstrained complexes.

(b) Na(Ph₄As)[Fe(S_2 -o-xyl)₂] Acetonitrile Solvate. This was the first crystalline salt of the Fe(II) dianion to be isolated. In addition to the high mosaicity of the crystals, an additional problem in providing a complete crystal structure determination has been the uncertainty in the exact composition of the solvate components of the compound. Of the reasonable possibilities analytical data agree best with a \cdot 2MeCN solvate, but the formulations \cdot 2MeCN \cdot H₂O, \cdot 2MeCN \cdot EtOH, and, marginally, \cdot MeCN \cdot H₂O cannot be eliminated. As already described one acetonitrile solvate molecule was located in the x-ray study, but another solvate species containing the atom

Figure 1. A stereoview of the unit cell of (Et_4N) [Fe(S₂-o-xyl)₂]. Atoms are drawn with 20% probability ellipsoids except for the hydrogen atoms, which are drawn artificially small. Hydrogen atoms on the cations and on the phenyl rings are omitted for the sake of clarity. The view is approximately down the x axis, with the y axis from left to right and the z axis from bottom to top.

Figure 2. Stereoviews of the $[Fe(S_2 - o-xyl)_2]^-(A,B)$ and $[Fe(S_2 - o-xyl)_2]^2-(C)$ anions. In each view the 50% probability ellipsoids are displayed except for the hydrogen atoms, which are drawn artificially small.

Figure 3. Geometries of the Fe-S₄ units in $[Fe(S_2-o-xyl)_2]^-(A,B)$, $Rd_{ox}(C)$, $[Fe(S_2-o-xyl)_2]^2^-(D)$, and $Fe[(SPMe_2)_2N]_2(E)$. The 50% probability ellipsoids are shown except for (C), where the scale is arbitrary. Note that the spatial orientation of these units is the same as in Figure 2, such that S1-S2 and S3-S4 define the chelate rings in A, B, and D. This arrangement applies to E as well, which was drawn using published data.²⁴

Figure 4. A stereoview of the unit cell of $Na(Ph_4As)[Fe(S_2-o-xyl)_2]$ acetonitrile solvate. The 20% thermal ellipsoids are shown except for the hydrogen atoms. The positions of the axes are the same as in Figure 1.

X could not be identified.^{37b} Although other crystalline salts with simpler compositions were subsequently isolated, the structure of this compound was pursued. The resulting structural parameters (Table X), while not as precisely determined as might be desired, are of more than sufficient precision to allow a meaningful comparison between Fe(II,III)–S₄ coordination units.

A unit cell stereoview is given in Figure 4 and shows the structure to consist of well-separated cations and anions. As can be seen from this figure and the data of Table XII, atom X and the nitrogen atom of the ordered acetonitrile molecule are within van der Waals contact with the sodium ion; neither is within coordinating distance of Fe(II). Approximately octahedral coordination is completed about the sodium ion by

Figure 5. Cyclic voltammogram for the $[Fe(S_{2^{-O}}-xyl)_2]^{-/2^{-}}$ couple in DMF solution at a Pt electrode and a scan rate of 50 mV/s. Potentials are referenced to a SCE.

van der Waals contacts with two S(1) atoms, an S(3) atom, and an S(4) atom. The Ph₄As⁺ cation shows no unusual trends in geometry (Table XII). The average As-C distance is 1.887 (15) Å, the standard deviation estimated from a population of four being roughly comparable with those of 0.008-0.012 Å estimated from the inverse matrix. The average C-As-C angle is 109.5 (2.3)°; there are clearly significant angular variations from tetrahedral symmetry, presumably arising as a result of packing forces.

As can be readily appreciated from Figure 2C and 3D, $[Fe(S_2-o-xyl)_2]^{2-}$ possesses overall an approximate tetrahedral structure, as does Rd_{red} based on the results of various physical measurements^{11a} (vide infra) and preliminary x-ray observations at 4-Å resolution, which have indicated that upon dithionite reduction of a C. pasteurianum Rdox crystal the configuration of sulfur atoms around the iron atom had not changed.^{19b} In the Fe(II)-S₄ coordination unit of the dianion Fe-S distances range from 2.324 (5) to 2.378 (5) Å with a mean value of 2.356 (13) Å, 0.089 (13) Å longer than the mean value for the two Fe(III) monoanions. The range and mean values of S-Fe-S angles are 103.5 (2)-114.9 (2)° and 109.5 (1.7)°, respectively. Average bite distances and angles are 3.89 Å and 111.5°, respectively, and the dihedral angle between FeS_2 planes is 94.3°. Thus the Fe(II)-S₄ coordination unit, as the Fe(III)-S₄ unit, approaches T_d symmetry, but rhombic distortions are clearly evident. While $[Fe(S_2-o-xyl)_2]^{2-}$ is also dissymmetric in the crystal (Figure 2C), chelate ring conformations are appreciably different from those exhibited by $[Fe(S_2-o-xyl)_2]^-$. The most significant change is in the internal Fe-S-C angles, which average 108.2° in the Fe(II) dianion and 101.5° in the two Fe(III) monoanions. This change is reflected in another way by the dihedral angles between the FeS_2 and C_2S_2 planes (Table X). In essence the iron atom lies closer to the C_2S_2 plane in the Fe(II) than in the Fe(III) complex. As a result of the longer Fe-S distances in $[Fe(S_2-o-xyl)_2]^{2-}$ the S...S bite distance is greater and this, together with the tendency of the sulfur atoms toward a tetrahedral distribution of bonding and lone-pair electrons, brings about this conformational change.

In both structures we have been unable to identify clearly cation-anion or solvate-anion interactions or chelate ring conformations as sources of degradation of Fe(II,III)-S₄ coordination units from idealized T_d microsymmetry. As has been noted, the structures of the two independent Fe(III) monoanions are virtually identical. Further, the Fe(II)-S₄ units in [Fe(S₂-o-xyl)₂]²⁻ (Figure 3D) and Fe[(SPMe₂)₂N]₂²⁴ (Figure 3E) are in reasonable agreement, with average Fe-S distance and S-Fe-S angle values in the latter being 2.360(9)Å and 109.3 (2.2)°, respectively. Thus, it appears that the coordination unit in $[Fe(S_2-o-xyl)_2]^{2-}$ is probably not significantly distorted as a result of the packing of ionic units in the unit cell, including the van der Waals interaction of the sodium atom with particular sulfur atoms. One possible source of distortions in the Fe(II) complexes (⁵E T_d ground state) is the Jahn-Teller effect; Jahn-Teller distortions are absent in the tetrahedral Fe(III) case (⁶A₁ ground state). We conclude that the coordination geometries of $[Fe(S_2-o-xyl)_2]^-$ and $[Fe(S_2-o-xyl)_2]^$ o-xyl)₂]²⁻, on which no symmetry is crystallographically imposed, are near representations of the configurations which would arise in the absence of perturbative crystalline and ligand structural effects; i.e., they closely approach the limit of unconstrained Fe(II,III)(SR)₄ stereochemistries. Further discussion of structural properties is deferred to a later section.

Electron Transfer Properties. The conversion of [Fe(S₂- $(o-xyl)_2$ ²⁻ to [Fe(S₂-o-xyl)₂]⁻ upon reaction with dioxygen suggests that these two species should be interconvertible by a simple one-electron transfer reaction, a property obligatory to their designation as Rd analogues. Previously it had been shown that in DMF $[Fe(S_2 - o - xyl)_2]^-$ reduces at a Pt electrode with $E_{1/2} = -1.03$ V and a slope of -67 mV (-57 mV at a DME) evaluated from a plot of $\log[i/(i_d - i)]$ vs. E.²⁶ Cyclic voltammetric parameters suggested a kinetically quasi-reversible³⁸ process. A voltammogram recorded at 50 mV/s is shown in Figure 5. The constant peak current ratio $i_{p,c}/i_{p,a} =$ 1.03 ± 0.03 at scan rates of 10-500 mV/s indicates stability of the reduced form which was considered, but not proven, to be $[Fe(S_2-o-xyl)_2]^{2-}$. Anodic polarography of the Fe(II) complex in DMF (Pt electrode) reveals a one-electron oxidation at -1.02 V (slope 63 mV) and no other oxidation waves to -0.3 V, thereby confirming the existence of the couple $[Fe(S_2 - o - xyl)_2]^- + e^- \rightleftharpoons [Fe(S_2 - o - xyl)_2]^{2-}$. When simply converted to the standard hydrogen electrode reference without further correction this couple is ca. 0.7 V more negative than potentials for the Rd_{ox}/Rd_{red} couple.^{12a,14a} Substantially more negative potentials in nonaqueous media compared to protein potentials in aqueous solution are features common to all 1-, 2-, and 4-Fe synthetic analogues.^{4,10,39} For the latter analogues differences are reduced to ca. 100-150 mV more negative than Fd_{ox}/Fd_{red} protein values when potentials of both analogues and proteins are measured polarographically in the same media.⁴⁰ Similar experiments have not as yet been conducted for Rd proteins and the 1-Fe analogues described here. When examined in DMF solution (Pt electrode) $[Fe_2(s_2-o-xyl)_3]^{2-1}$ shows two oxidation waves. These occur at $E_{1/2} = -0.63$ and -0.07 V with slopes of 98 and 148 mV, respectively, and a diffusion current ratio of 1:1. In view of the irreversible nature of these two processes, no chemical attempts to prepare oxidation products of the binuclear dianion have been made.

Mössbauer Spectra. (a) [Fe(S₂-o-xyl)₂]⁻. The zero-field and magnetically perturbed Mössbauer spectra of the high-spin Fe(III) analogue have been presented previously,²⁶ and relevant data are collected in Table XIII. The most important results are the following: (i) low temperature zero-field spectra consist of a single quadrupole doublet and are consistent with a high-spin Fe(III)-S₄ unit distorted from T_d symmetry; (ii) the existence of a quadrupole splitting (ΔE_Q) in frozen solution indicates that upon release from a crystalline environment a noncubic stereochemistry persists; (iii) the close agreement between internal hyperfine magnetic fields at the ⁵⁷Fe nucleus ($H_{\rm hf}$), evaluated from spectra of [Fe(S₂-o-xyl)₂]⁻ obtained in an applied magnetic field $H_0 = 80$ kOe, imply similar bond covalency effects in the analogue and Rd_{ox}.

(b) [Fe(S₂-o-xyl)₂]²⁻. Mössbauer spectra were obtained for erystalline samples of Na(Ph₄As)[Fe(S₂-o-xyl)₂], containing high-spin Fe(II), between 1.4 K and room temperature.

			Mössbauer data						
Compd	μ, u _B	<i>Т</i> , К	δ,mm/s ^a	$\Delta E_{Q}, \text{mm/s}$	Sign of V_{zz}	H _{hf} , kOe			
$(Et_4N)[Fe(S_2 \cdot o \cdot xyl)_2]^b$ Rd _{0x} Na(Ph_4As)[Fe(S_2 \cdot o \cdot xyl)_2]	5.92 5.85 ^e 5.10 ^m	77 77 295	0.13c 0.25d, k 0.61 ^h	0.57 ^c 0.74 (?) ^e 3.20 ^h		- 380 <i>8</i> - 370 <i>f</i> , <i>8</i>			
		77 4.2 1.4	0.61 0.61 0.61	3.28 3.34 3.32	(-)	-1281			
$\frac{(\mathrm{Ph}_{4}\mathrm{P})_{2}[\mathrm{Fe}(\mathrm{SPh})_{4}]^{i}}{\mathrm{Rd}_{\mathrm{red}}^{f,k}}$	5.02 <i>j</i> 5.05 ^e	77 77	0.64 0.65	3.24 3.16	(-) (-)	-193g, l			

^a Relative to Fe metal. ^b Reference 26. ^c ±0.02. ^d Reference 18b. ^e Reference 13. ^f Reference 18a. ^g At 4.2 K. ^h Values of δ (±0.03) and ΔE_Q (±0.05) were obtained from computer fits to observed spectra and have the indicated uncertainties at all temperatures. ⁱ Reference 42. ^j Reference 23. ^k In comparing protein and analogue results it should be noted that no second-order Doppler shift correction has been applied to the results of ref 18a and b, where (in contrast to this work) measurements were taken with source and absorber at different temperatures. ^l At $H_0 = 60$ kOe. ^m Bis(tetraethylammonium) salt at 80 K.

Spectral parameters are listed in Table XIII and spectra at $H_0 = 0$ are shown in Figure 6. At each temperature the spectrum consists of a single symmetric quadrupole doublet. Values of isomer shifts (δ) and ΔE_Q are comparable with those measured in other iron compounds with distorted tetrahedral Fe-S₄ coordination units. Isomer shifts of the oxidized and reduced analogues are consistent with the values of 0.2 and 0.6 mm/s proposed by Reiff et al.⁴¹ as diagnostic of high-spin Fe(III)-S₄ and Fe(II)-S₄, respectively. More recently, Kostikas et al.⁴² have measured the Mössbauer parameters of several tetrahedral Fe(II)-S₄ complexes,^{22,23} including [Fe(SPh)₄]²⁻ (Table XIII). Their values at 77 K are entirely similar to those of [Fe(S₂-o-xyl)₂]²⁻, whose isomer shift and quadrupole splitting in turn closely match those of *C. pasteurianum* Rd_{red}.^{18a}

In a ligand field of T_d symmetry the free ion ⁵D term of Fe(II) is split into a lower ${}^{5}E(e^{3}t_{2}{}^{3})$ and upper ${}^{5}T_{2}(e^{2}t_{2}{}^{4})$ state separated by $\Delta_1 \sim 5000-6000 \text{ cm}^{-1}$ (vide infra). In this exact symmetry no quadrupole splitting is expected because the two component states of the ground orbital doublet contribute equal and opposite values to the electric field gradient (EFG) at the nucleus. Distortions from T_d symmetry observed with $Na(Ph_4As)[Fe(S_2-o-xyl)_2]$ result in a lifting of the groundstate orbital degeneracy and a finite quadrupole splitting. The structural parameters for the Rd_{red} site have not been determined. Because the Fe(II)-S₄ unit of $[Fe(S_2-o-xyl)_2]^{2-}$ is too unsymmetrical to be classified in a rotational subgroup of T_{d} . and all quintet states derive from the same free ion term, it is somewhat more convenient to present a low-symmetry d⁶ energy diagram in terms of individual d orbitals (Figure 7). As in a previous treatment of Rd_{red},^{11a} orbital separations are approximated to spectroscopic energies inasmuch as all quintet states have the same mutual electron repulsion parameters. From the small temperature dependence of $\Delta E_{\rm O}$ observed over the temperature range 1.4-295 K (Table XIII), an estimate of the energy separation between the ground orbital to the next excited state can be obtained by fitting the experimental data to an equation of the form $\Delta E_{\rm O}(T) = \Delta E_{\rm O}(0) \tanh(\Delta/2kT)$ expected for the thermal population of the two isolated orbital levels, d_{z^2} and $d_{x^2-y^2}$, split by an energy Δ . $\Delta E_O(0)$ is the quadrupole splitting at zero temperature where only the ground orbital state is populated and $\Delta E_{\rm O}(T)$ is its value at temperature T. Here we have assumed that Δ is much larger than any splittings due to the spin-orbit interaction and the direct lattice contribution to the EFG has been neglected. By using $\Delta E_{\rm Q}(0)$ = 3.32 mm/s, the value observed at 1.4 K, the lowest temperature of measurement, an estimate of $\Delta \simeq 900 \text{ cm}^{-1}$ is obtained. The temperature dependence observed by Rao et al.^{18a} for Rd_{red} is somewhat smaller than that of $Na(Ph_4As)$ - $[Fe(S_2-o-xyl)_2]$. The latter, however, is very similar to that of freeze-dried (powder) Rd_{red} observed by Phillips et al.¹³ for which Eaton and Lovenberg^{11a} estimate $\Delta \simeq 850$ cm⁻¹. Owing to the experimental error associated with the values of $\Delta E_{\rm O}$

Figure 6. Mössbauer spectra of Na(Ph₄As)[Fe(S₂-o-xyl)₂] at various temperatures. The solid lines give least-squares fits of the experimental points to Lorentzian lines. The small broad feature centered above 0 mm/s is presumably due to an Fe(III) impurity.

Figure 7. d-Orbital energy level diagram for Fe(11) in T_d and distorted tetrahedral ligand fields. Orbital energies for Rd_{red} are taken from ref 11a.

and the small temperature dependence, these values of Δ are probably accurate within ± 100 cm⁻¹.

To characterize further the ground state of the Fe(II) ion, Mössbauer spectra in externally applied magnetic fields, in longitudinal geometry, were obtained. As discussed by Collins⁴³ and Gabriel and Ruby,⁴⁴ when the line width is taken into account, the superposition of the absorption lines arising from transitions between the magnetically perturbed nuclear levels in the presence of the randomly oriented EFG tensor in a powder absorber results in the splitting of the $|\frac{1}{2}, \pm \frac{1}{2}\rangle \rightarrow |\frac{3}{2}\rangle$,

Figure 8. Mössbauer spectrum of Na(Ph₄As)[Fe(S₂-o-xyl)₂] at 4.2 K in an external field of 80 kOe applied parallel to the γ -ray direction. The solid line is theoretical for a powder sample with $\Delta E_Q = 3.32$ mm/s and an effective magnetic field of 63 kOe with longitudinal configuration. The differences between the experimental data and calculated curve are due to anisotropy of the hyperfine interaction in the sample.

 $\pm \frac{3}{2}$ transition line into an apparent doublet and the $|\frac{1}{2}, \pm \frac{1}{2}$ \rightarrow $|\frac{3}{2}, \pm \frac{1}{2}$ line into an apparent triplet. The spectrum of $Na(Ph_4As)[Fe(S_2-o-xyl)_2]$ in the presence of a magnetic field of 80 kG at 4.2 K is shown in Figure 8. The lower velocity absorption line of the quadrupole doublet observed in the absence of an external magnetic field has been split into a doublet and the higher velocity absorption line into a triplet, indicating that the sign of the principal component of the EFG, V_{zz} , is negative. Similar spectra were obtained at lower values of the applied field as well as at higher absorber temperatures. The negative sign of V_{zz} demonstrates that the ground-state orbital of the Fe(II) ion has d_z² symmetry, as has previously been shown for Rdred.^{18a} Comparisons of the observed spectra with computer-generated spectra reveal that the observed field at the nucleus H_n differs from the applied magnetic field, H_0 , indicating the presence of a magnetic hyperfine interaction induced by the applied field. For $H_0 = 60$ kOe, $|H_n| = 68.5$ kOe; for $H_0 = 80$ kOe, $|H_n| = 63$ kOe. Since H_n decreases as H_0 increases from 60 to 80 kOe, we infer that the sign of the magnetic hyperfine interaction expressed as an effective magnetic field, $H_{\rm hf}$, is negative. Writing $\vec{H}_{\rm n} = \vec{H}_0 + \vec{H}_{\rm hf}$, the 60 and 80 kOe spectral parameters yield $H_{\rm hf} = -128$ and -143 kOe, respectively. The parameters obtained at 1.4 K yield the same value of $H_{\rm hf}$ as those obtained at 4.2 K for H_0 = 60 and 80 kOe. The fact that $|H_{\rm hf}|$ continues to increase as H_0 increases from 60 to 80 kOe implies a zero-field splitting of the electronic ground state of the order of several degrees. The full saturation value of the magnetic hyperfine interaction constant would not be observed until μH_0 is large compared with the zero-field splitting.

The magnetic hyperfine interactions induced by the applied field in the present case compare with those observed by Rao et al.^{18a} in Rd_{red} as follows. For $H_0 = 60$ kOe, they obtained $H_{\rm hf} = -193$ kOe at temperatures between 4.2 and 1.3 K. However, as discussed above, if there is a zero-field splitting, this does not represent the full saturation value. If we assume comparable zero-field splittings in the two cases, then the difference in the hyperfine interaction reflects a difference in the orbital character of the ground state. According to Marshall and Johnson⁴⁵ the magnetic hyperfine interaction arises from three principal contributions,

$$H_{\rm hf} = H_{\rm C} + H_{\rm L} + H_{\rm D} \tag{2}$$

where H_C is the core polarization contribution arising from the Fermi contact interaction, H_L is the orbital moment contribution, and H_D is the field produced by the dipolar interaction with the spin moment of the iron atom. H_D is proportional to the EFG at the nucleus and is thus virtually the same

Figure 9. Absorption spectra: - - -, Rd_{ox} in aqueous solution (50 mM TrisCl, pH 8.5); —, (60 μ M Rd_{ox} in 4:1 v/v Me₂SO/H₂O); — (lower curve), [Fe(S₂-o-xyl)₂]⁻ in 4:1 v/v Me₂SO/H₂O formed by adding 40 μ l of 0.24 M o-xyl(SH)₂ to 1 ml of the preceding solution. This spectrum was recorded 1 h after dithiol addition.

in the two cases. It is also reasonable to assume H_C to be comparable. This leaves H_L to account for the difference, with a slightly larger orbital contribution in the present case. This implies a larger value of Δ in Rd_{red}, which is consistent with the smaller temperature variation of ΔE_Q in Rd_{red}, but the experimentally determined Δ values for the protein and $[Fe(S_2-o-xyl)_2]^{2-}$ are insufficiently accurate to establish this point.⁴⁶

In summary, the Mössbauer parameters δ , ΔE_Q , $H_{\rm hf}$ collected in Table XIII, together with the approximate values of the ground orbital doublet splitting Δ , convincingly demonstrate that $[{\rm Fe}({\rm S}_2 \cdot o \cdot {\rm xyl})_2]^{2-}$ and *C. pasteurianum* Rd_{red} have similar Fe(II)-S₄ geometries, ground-state electronic structures, and Fe-S bond covalency properties. This similarity doubtless extends to other Rd_{red} proteins such as, e.g., that from *Ch. ethylica*.^{18a} In this context the available data indicate that $[{\rm Fe}({\rm SPh})_4]^{2-23,42}$ is also an entirely suitable ground-state analogue of Rd_{red}.

Electronic Absorption Spectra. (a) $[Fe(S_2 - o - xy)_2]^-$. The spectrum of this complex in DMF solution has been reported earlier²⁶ and resembles that of Rd_{ox} proteins in aqueous solution. Rd_{ox} chromophores are characterized by an intense two-band system at ~380 and ~490 nm, a less intense feature at \sim 560 nm, and a much weaker band at \sim 745 nm. The spectrum of C. pasteurianum Rdox (Table XIV) is typical and at least the three higher energy bands, as previously discussed, 11a, 47 arise from S \rightarrow Fe charge-transfer excitations. To provide a more direct comparison between protein and analogue spectra a solution of C. pasteurianum Rd_{ox} in 4:1 v/v Me₂SO/H₂O was treated with sufficient o-xyl(SH)₂ to afford a dithiol/Fe mol ratio of 160:1 (Figure 9). The system exhibited slow spectral changes with the final spectrum, obtained after 1 h, being identical with that of $[Fe(S_2-o-xyl)_2]^-$ measured separately. Consequently, the spectral changes arise from the reaction

$$Rd_{ox} + 2 o - xyl(SH)_2 \rightarrow [Fe(S_2 - o - xyl)_2]^- + apo - Rd(3)$$

similar in kind to reactions which extrude Fe_2S_2 and Fe_4S_4 active site cores of Fd proteins under the same or similar experimental conditions.⁴⁸ Using the extinction coefficient data in Table XIV it was found that 1.1 g-atom of Fe/mol protein was removed. The analogue spectrum is dominated by two intense bands at 354 and 487 nm which doubtless correspond to the somewhat more intense protein features at 376 and 490 nm in Me₂SO/H₂O water solution. More pronounced differences are evident in the 550-800-nm range, with the broad

Journal of the American Chemical Society / 99:1 / January 5, 1977

Table XIV. Solution Absorption Spectral Data for o-Xylyldithiolato Metal(II,III) Complexes, Rdox, and Rdred

Compd	Solvent	$\lambda_{\max}, n m (\epsilon^{a})$
$(Et_4 N)[Fe(S_2 - o - xyl)_2]$	DMF Me.SO/H.O ^b	688 (1670), ~640 (1600), 486 (6240), ~450 (sh, 4300), 354 (8300) ~660 (1480), 487 (5400), ~425 (3800), 354 (7850)
Rd _{ox} c	Me_2SO/H_2O^b H_2O^d , crystal ^h	745, 560 (sh), 490, 376 746 (360), 565 (~4000), 490 (8850), 380 (10 800)
$(Et_4N)_2[Fe(S_2 - o - xyl)_2]$	MeCN DMF	~2000 (109, sh), f 1800 (123), [${}^{5}E \rightarrow {}^{5}T_{4}$] ~450 (sh, 390), ~355 (sh, 2660), 323 (7710)
$Na(Ph_4As)[Fe(S_2\sigma xyl)_2]$ Rd_{red}^{C}	$Me_{2}SO/H_{2}O^{b}$ DMF $D_{2}O^{g}$ $H_{2}O^{d}$ $Me_{2}SO/H_{1}O^{b}e^{b}$	~352 (sh, 3290), 320 (6320) ~450 (sh, 410), ~355 (3070), 322 (7410) ~2700, 1600 (130) [${}^{5}E \rightarrow {}^{5}T_{2}$] 333 (6300), 311 (10 800) 338 315
$(Et_4N)_2[Fe_2(S_2-o-xyl)_3]$	Me_2SO DMF	$1930 (175) [{}^{5}E \rightarrow {}^{5}T_{2}]$ 360 (8570)
$(Et_4N)_2[Co(S_2-o-xyl)_2]$	MeCN DMF	1550 (242), ~1380 (sh, 190) [${}^{4}A_{2} \rightarrow {}^{4}T_{1}(F)$] 788 (460), 684 (645), 610 (481) [${}^{4}A_{2} \rightarrow {}^{4}T_{1}(P)$], 355 (3450)
$(Et_4N)_2[Ni_2(S_2-o-xyl)_3]$	DMF	~620 (sh, 524), 486 (3760)

^a M⁻¹ cm⁻¹. ^b 4:1 v/v, aqueous portion 50 mM in TrisCl, pH 8.5. ^c C. pasteurianum. ^d Reference 14a. ^e Principal bands. ^f Poorly defined feature. ^g Reference 15. ^h Reference 11a.

Table XV. Ligand Field Spectral Parameters^{*a*} for Tetrahedral Co(II)-S₄ and Fe(II)-S₄ Complexes

Complex	ν2	ν3	Δ_{t}	B'	Ref ^b
Co[(SPPh_),CH],	6540	14 9 70	3800	675	20b
$Co[(SPMe_2),N]_2$	6580	14 400	3840	631	20a
$[Co(SPh)_4]^{2^-}$	6900	14 800 <i>d</i>	4030	643	23
$[Co(S_{2}-o-xyl)_{2}]^{2-}$	6980 ^c	14 570°	4090	619	е
	7250	14 6 20 <i>d</i>	4270	604	е
[Co(12-peptide)] ²⁻	7330	15 100	4300	636	21
$[Co(dts)(SPh)_2]^{2-}$	8200	15 490 <i>d</i>	4880	603	23
$[Co(dts)_2]^{2-}$	8300	15 100	4980	564	22
		$\Delta_{\mathfrak{t}}\sim\nu[{}^{\mathfrak{s}}\mathrm{E}\rightarrow$	⁵T₂]	Re	f
Fe[(SPMe_),N],		~3500 (split)	20	a
[Fe(12-peptide)]	2	~5100 (broa	21		
$[Fe(S_2 - o - xyl)_2]^{2-}$		5560	е	е	
[Fe(dts),] ²⁻	5800	22			
$[Fe(SPh)_4]^{2-}$	5880	23			
Rdred		6250 (~50	00)	11a,	15

 a Cm⁻¹. b Source of transition energy data. c Data calculated using intensity-weighted $\nu_{2,\max}$ and average of ν_{3} bands. d Data calculated using central ν_{3} band. e This work.

analogue absorption near 660 nm perhaps being the red-shifted counterpart of the protein absorption at 560 nm. Specific band assignments are not warranted at this time, but may be possible upon completion of SCF-X α -SW calculations of model Fe(SR)₄⁻ chromophores, for which preliminary results have recently been published.⁴⁹ On an empirical basis the comparative spectra in Figure 9 indicate a similarity, but certainly not an identity, between analogue and protein chromophores, a matter qualitatively consistent with the foregoing structural and Mössbauer spectral results.

(b) $[Fe(S_2-o-xyl)_2]^{2-}$. In contrast to the ready occurrence of reaction 3, Rd_{red} did not react with excess o-xyl(SH)₂ within 1 h under the same conditions. The spectra in Figure 10 were obtained on separately measured samples. Spectra in the UV region of both the analogue and Rd_{red} are dominated by two intense charge-transfer bands, shifted as expected to higher energies compared with the Fe(III) case.⁵⁰ In Me₂SO/ H_2O the bands of $[Fe(S_2-o-xyl)_2]^{2-}$ (320, 352 nm) exhibit small red shifts compared with those of C. pasteurianum Rdred (315, 338 nm), but a close degree of spectral similarity is evident. A somewhat more direct probe of electronic properties is provided by ligand-field spectra, which for Fe(II) in T_d symmetry consist of the single transition ${}^{5}E \rightarrow {}^{5}T_{2}$ found in the nearinfrared region for simple inorganic complexes.⁵¹ From a combination of absorption and CD measurements Eaton and Lovenberg'1a have deduced the orbital splittings in Figure 7 for C. pasteurianum Rd_{red} . Measurements of $[Fe(S_2-$

Figure 10. Absorption spectra: left, Rd_{red} and $[Fe(S_2-o-xyl)_2]^{2-}$ in 4:1 v/v Me_2SO/H_2O with aqueous component containing 50 mM TrisCl (pH 8.5), $[Fe_2(S_2-o-xyl)_3]^{2-}$ in DMF; right, near-infrared spectra of $[Fe(S_2-o-xyl)_2]^{2-}$ in acetonitrile and $[Fe_2(S_2-o-xyl)_3]^{2-}$ in Me_2SO .

o-xyl)₂]²⁻ were confined to solution absorption spectra (Table XIV, Figure 10), which reveal a well-defined maximum at 1800 nm (5560 cm⁻¹) and an indication of an unresolved band near 2000 nm (5000 cm⁻¹). These results indicate a small splitting of the t2 orbitals, consistent with the lack of symmetry of the complex. In such cases the single parameter Δ_1 is inadequate to describe orbital splittings, but in the absence of fully resolved spectra it has been approximated to the principal band energy as an empirical modulus of ligand-field strength. Results for $[Fe(S_2-o-xyl)_2]^{2-}$ and related complexes are collected in Table XV, from which it is seen that thiolate sulfur induces an effective Δ_1 of ca. 5000-6000 cm⁻¹. A corresponding value of Δ_1 for Rd_{red} is uncertain owing to the large t₂ orbital splitting, but the same approximation or the mean of the orbital energies leads to 6250 or 5700 cm⁻¹, respectively. Δ_1 has otherwise been approximated as ~5000 cm⁻¹.^{11a} Consequently, it follows that the average ligand-field strength in Rd_{red} and $[Fe(S_2-o-xyl)_2]^{2-}$ are comparable (vide infra), but the t₂ orbital total splitting in the protein may be larger, reflecting a more distorted metal site geometry.

(c) $[Fe_2(S_2-o-xyl)_3]^{2-}$. This highly oxygen-sensitive complex, an unexpected product during initial attempts²⁶ to synthesize a Rd_{red} analogue, has not been studied in detail and as yet single crystals suitable for x-ray studies have not been obtained. Its absorption spectrum (Figure 10) clearly distinguishes it from $[Fe(S_2-o-xyl)_2]^{2-}$ in the UV region and identifies the Fe(II) coordination site as essentially tetrahedral on the basis of the broad band at 5200 cm⁻¹ (ϵ_{Fe} 88). Low-temperature Mössbauer spectra reveal a diamagnetic ground state, which must arise from antiparallel spin coupling. If $[Fe_2(S_2-o-xyl)_3]^{2-}$ is dimeric, likely structures are 1 and 2. One of these

structures may also apply to $[Fe_2(SCH_2(S)CH_2CH_2OH)_3]^{2-}$, identified in solution,⁵² if it is actually binuclear; this is the only Fe(II) thiolate complex previously reported with the same stoichiometry as $[Fe_2(S_2-o-xyl)_3]^{2-}$. The μ_2 -thiolato mode of bridging has been established by x-ray studies of several dimeric Fe(II) complexes.⁵³

(d) $[Co(S_2-o-xyl)_2]^{2-}$. This compound, prepared as its Fe(II) analogue using ca. 3.5:1 dithiol/Co mol ratio, was sought in order to utilize the spectroscopically informative tetrahedral Co(II) chromophore^{51,54} in a further examination of the ligand-field properties of S_2 -o-xyl²⁻ and other sulfur-containing ligands. The magnetic moment (4.48 (20 K)-4.60 μ_B (280 K)) and absorption spectrum (Table XIV, Figure 11) of $[Co(S_2 - Co(S_2 - CO(S$ o-xyl)2]²⁻ demonstrate that this complex possesses the desired stereochemistry. In T_d symmetry Co(II) has three spin-allowed ligand-field transitions, of which ${}^{4}A_{2} \rightarrow {}^{4}T_{1}(F)(\nu_{2})$ and ${}^{4}A_{2}$ \rightarrow ⁴T₁(P) (ν_3) occur in the visible and near-infrared regions.⁵¹ The spectrum of $[Co(S_2-o-xyl)_2]^{2-}$ reveals a split ν_2 band and an especially clear case of resolution of ν_3 into three components whose separations (1930, 1770 cm⁻¹) are unlikely to arise from spin-orbit coupling effects only. Thus this complex, as $[Fe(S_2-o-xyl)_2]^{2-}$, possesses a tetrahedral chromophore with rhombic distortion. Following the usual practice in such cases, $T_{\rm d}$ microsymmetry was assumed, spin-orbit interactions were neglected, and the parameters Δ_1 and B' were evaluated from the equations

$$\Delta_1^2 - 0.529(\nu_2 + \nu_3)\Delta_1 + 0.294\nu_2\nu_3 = 0 \tag{4}$$

$$B' = (\nu_2 + \nu_3 + 3\Delta_1)/15 \tag{5}$$

derived by standard procedures of ligand-field theory. Results for $[Co(S_{2}-o-xyl)_2]^{2-}$ and other Co(II)-S₄ chromophores (in all cases recalculated from available literature data) are collected in Table XV, from which several points emerge. (i) For sulfur-containing ligands the spectrochemical series (6) is obtained, in which the equal rank of S₂-o-xyl²⁻ and 12-peptide⁴⁻ further emphasizes the electronic similarity between simple alkylthiolate and cysteinate ligands. (ii) Based on previous compilations of Δ_1 and B' data,^{51,54} thiolate ligands rank between chloride or azide and nitrogen-bonded thiocyanate in the more general series (7)⁵⁵ and are devoid of unusual nephelauxetic effects as manifested in values of B'. Consequently, it may be inferred that cysteinate groups, as all other coordinating peptide side chains in metalloproteins,

$$(SPR_2)_2N^- \sim (SPR_2)_2CH^- < SPh^- \leq S_2 \cdot o \cdot xyl^{2-}$$

 $\leq 12 \cdot peptide^{4-} < dts^{2-}$ (6)
 $I^- < Br^- < Cl^- < N_3^- < SPh^- \leq S_2 \cdot o \cdot xyl^{2-}$

$$\leq \mathbf{Br}^{-} < \mathbf{Cl}^{-} < \mathbf{N}_{3}^{-} < \mathbf{SPh}^{-} \lesssim \mathbf{S}_{2}\text{-}o\text{-}xyl^{2-}$$

$$\leq 12\text{-peptide} \sim \mathbf{OH}^{-} \sim \mathbf{NCO}^{-} < \mathbf{NCS}^{-}$$
(7)

are intrinsically weak-field ligands.⁵⁶ In their analysis of the Rd_{rcd} spectrum Eaton and Lovenberg,^{11a} prior to the availability of the data in Table XV, considered their estimate of $\Delta_1 \sim 5000 \text{ cm}^{-1}$ as disquieting, presumably because it exceeded values for halide complexes⁵¹ and Fe(II) in sulfide lattices,⁵⁷ and suggested that protein conformational constraints could be responsible. The current data support the view that the average ligand field strength in Rd_{red} is consistent with the expectations from the series in (6), i.e., in this sense the protein chromophore is unexceptional.

Figure 11. Absorption spectrum of $[Co(S_2-o-xyl)_2]^{2-}$ in acetonitrile (1000-2100 nm) and DMF (300-900 nm).

Although unrelated to the foregoing considerations, one additional aspect of the electronic spectrum of [Co(S₂- $(o-xyl)_2$ ²⁻ is worthy of mention. This is the only well-defined synthetic Co(II)-thiolate complex for which spectral data in both the ligand-field and charge-transfer regions are available. The band at 355 nm (ϵ 3450, Figure 11) is very likely a S \rightarrow Co(II) charge-transfer absorption and occurs at a wavelength close to that (340 nm, ϵ 15 500) found in the spectrum of horse liver alcohol dehydrogenase (LADH) in which all four Zn(II) atoms of the native enzyme have been replaced by Co(II).58 In its native form this enzyme has two catalytic and two structural sites containing the coordination units [Zn(S-Cys)₂(His)(H₂O)] and [Zn(S-Cys)₄],⁵⁹ respectively. The nature of coordination in "blue" copper proteins is an unresolved matter at present. Substitution of Cu(II) by Co(II) in stellacyanin affords a chromophore which contains ligand-field features suggestive of distorted tetrahedral coordination and a higher energy band (355 nm, $\epsilon \sim 1200$) assigned as S \rightarrow Co(II) charge transfer.⁶⁰ The spectral results for Co(S₂-o $xyl)_2^{2-}$ and Co₄(LADH) substantiate this assignment, and in the three species extinction coefficients occur in the range of ca. 900-1300/Co-S-Cys bond. Provided ligation modes are unchanged upon substitution, these results together with other recent spectroscopic evidence support the existence of one Cu-S-Cys interaction in the blue chromophore.61,62

(e) $[Ni_2(S_2-o-xyl)_3]^{2-}$. Despite the employment of a 3.4:1 dithiol/Ni mol ratio in synthesis, the product formed was the binuclear dianion (based on stoichiometry) rather than $[Ni(S_2-o-xyl)_2]^{2-}$ or $[Ni_3(S_2-o-xyl)_4]^{2-.63}$ Tetrahedral $[Ni(SPh)_4]^{2-}$ is reported to be formed in the presence of excess ligand.²³ Larger excesses of dithiol have not been used in this work. $[Ni_2(S_2-o-xyl)_3]^{2-}$ is diamagnetic in the solid, exhibits one ligand-field band in the visible (Table XIV), and has no spectral features from 500 to 2000 nm, indicative of a nonplanar structure in solution. Structures 1 and 2 with planar coordination are considered likely for $[Ni_2(S_2-o-xyl)_3]^{2-}$ if binuclear; binuclear thiolate-bridged Ni(II) complexes related to these enjoy established precedents.⁶⁴ Tetrahedral and planar coordination in the Fe(II) and Ni(II) dimers, respectively, follow the usual stereochemical trends of these metal ions,65 but the tetrahedral structure of $Ni[(SPR_2)_2N]_2$,^{20a,66} contrasted to the planar stereochemistry of $Ni[(SPR_2)_2CH]_2$,^{20b} remains difficult to rationalize.

Summary

The results presented for $[Fe(S_2-o-xyl)_2]^{2-}$ and those given here and elsewhere²⁶ for $[Fe(S_2-o-xyl)_2]^-$ indicate that these species are close electronic representations of Rd_{red} and Rd_{ox} , respectively. The collective data further suggest that metal ion site symmetries in Rd proteins may be somewhat more distorted from T_d symmetry than in the analogue, although it is difficult to translate available spectroscopic differences into actual structural differences. We cannot assert at present that the 1-Fe complexes are as close structural analogues to Rd sites as are $[Fe_4S_4(SR)_4]^{2-}$ species to Fd_{ox} and HP_{red} sites.⁴ However, we conjecture that the true structural disparity between $[Fe(S_2-o-xyl)_2]^-$ and Rd_{ox} may not be as large as that suggested by a comparison of Figures 3A, B, and C, and have previously cautioned²⁶ that designation of the C. pasteurianum Rd_{0x} site as entatic in the sense of Vallee and Williams⁶⁷ must await final refinement of the crystal structure.^{6,19} Recently the structures of Peptococcus aerogenes Rdox⁶⁸ and C. pasteurianum Rd_{ox}⁶⁹ have been examined in lyophilized and frozen solution states by x-ray absorption spectroscopy. Preliminary analyses of the extended x-ray absorption fine structure (EXAFS) spectra suggest that Fe-S distances are probably closer to being equal than are the latest quoted values (Figure 3C) obtained by x-ray diffraction.

Redox events at a Rd site reduce to the elementary ligandfield description of the equation

Fe(III)(
$$e^{2}t_{2}^{3}, S = \frac{5}{2}$$
) $\stackrel{+e^{-}}{\Longrightarrow}$ Fe(II)($e^{3}t_{2}^{3}, S = 2$) (8)

One state (Fe(III)) has no d-electron stereochemical influence and interconversion between the two states in a biological outer-sphere reaction proceeds by a change in population of the approximately nonbonding e orbitals $(T_d \text{ symmetry})$ without any necessary intervention of rearranged (excited) d-electron configurations. One of the recognized contributions to the enthalpic barrier to electron transfer^{70,71} is that of structural reorganization at the redox site in order to achieve the compromise geometry between Fe(II,III) ground-state minima, which serves as the transition state for electron gain or loss. If the Rd site is entatic, as previously proposed,⁷² this component of the total enthalpic activation energy will be quite small. If on the other hand, the geometries of Rdox and Rdred sites approach the unconstrained situations considered to be represented by $[Fe(S_2-o-xyl)_2]^-$ and $[Fe(S_2-o-xyl)_2]^{2-}$, respectively, the structures of the latter and related species provide a reasonable upper limit on the structural reorganization localized at the protein site. Defining $\delta = [Fe(II)-L]$ -[Fe(III)-L] and using mean distances, the following δ values are obtained for tetrahedral structural pairs: [Fe(S₂ $o-xyl_{2}^{2-}$, Fe[(SPMe_{2})_{2}N]_{2}/[Fe(S_{2}-o-xyl)_{2}]^{-}, 0.09 Å; [FeCl₄]²⁻/[FeCl₄]⁻, 0.11 Å.^{73,74} In the absence of protein constraints Fe-S distances in Rd upon oxidation would be expected to decrease by $\delta \sim 0.10$ Å, with about half this amount (together with associated angular changes) required to achieve the transition state. Values of stretching and bending force constants, currently unavailable, are required to estimate the structural reorganization energy in analogues and proteins. However, recent kinetic studies of C. pasteurianum Rd show that the protein undergoes very rapid outer-sphere redox and electron self-exchange reactions, and that activation barriers are dominated by entropic rather than enthalpic contributions.⁷⁵ When viewed against cases of slow outer-sphere rates where both structural and electronic configurational reorganization occur along the reaction coordinate,⁷⁶ it is evident, as noted by others as well,^{70,75} that the architecture and oxidation levels of the Rd active site are such as to provide relatively lower structural and electronic reorganizational barriers to outer-sphere electron transfer. As discussed elsewhere,⁴ this statement applies to other types of Fe-S protein sites. Indeed, it is difficult to imagine, given the weak-field nature of biological ligands and the requirement of an abundant metal, how the evolutionary construction of redox centers could have been more efficacious in minimizing these two types of barriers.

National Institutes of Health Grants GM-19256, GM-22351, and GM-22352, at Northwestern University by National Institutes of Health Grant HL-13157, and at the Francis Bitter National Magnet Laboratory, M.I.T., by the National Science Foundation. We thank Professor L. E. Mortenson for a sample of rubredoxin and Professor Mortenson, Dr. C. L. Hill, and W. O. Gillum for experimental assistance. G.C.P. was partially supported by a National Institutes of Health Biomedical Sciences Support Grant administered by M.I.T.

Supplementary Material Available: tabular listings of idealized positions of hydrogen atoms (Table IV), root-mean-square amplitudes of vibration (Table V), values of F_0^2 and F_c^2 for (Et_4N) [Fe- $(S_2-o-xyl)_2$ (Table V1), and values of $10|F_0|$ and $10|F_c|$ for Na-(Ph₄As)[Fe(S₂-o-xyl)₂] acetonitrile solvate (Table IX) (70 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) Part 13. W. O. Gillum, R. B. Frankel, S. Foner, and R. H. Holm, Inorg. Chem., 15, 1095 (1976).
- (2)(a) Stanford University; (b) Northwestern University; (c) Francis Bitter National Magnet Laboratory, M.I.T. (3) R. H. Holm, Endeavour, 34, 38 (1975)
- (4) R. H. Holm and J. A. Ibers in "Iron-Sulfur Proteins", Vol. III, W. Lovenberg,
- (a) A. T. Holmand, S. A. Loela IV. Infr-Sulful Foldens, Vol. III, W. Lovenberg, Ed., Academic Press, New York, N.Y., in press, Chapter 7.
 (5) W. H. Orme-Johnson, Annu. Rev. Biochem., 42, 159 (1973); G. Palmer in "The Enzymes", Vol. XII, Part B, 3d ed, P. D. Boyer, Ed., Academic Press, New York, N.Y., 1975, Chapter 1.
- L. H. Jensen, Annu Rev. Biochem., 43, 461 (1974)
- Protein abbreviations: Fd, ferredoxin; HP, "high-potential" iron protein; Rd. rubredoxin.
- (8) (a) R. H. Holm, B. A. Averill, T. Herskovitz, R. B. Frankel, H. B. Gray, O. Siiman, and F. J. Grunthaner, J. Am. Chem. Soc., 96, 2644 (1974); (b) C. . Yang, K. H. Johnson, R. H. Holm, and J. G. Norman, Jr., ibid., 97, 6596 (1975); (c) R. W. Lane, A. G. Wedd, W. O. Gillum, E. Laskowski, R. H. Hoim. R. B. Frankel, and G. C. Papaefthymiou, J. Am. Chem. Soc., submitted for publication.
- (9) (a) B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, J. Am. Chem Soc., 95, 3523 (1973); (b) L. Que, Jr., M. A. Bobrik, J. A. Ibers, and R. H.
- Holm, *ibid.*, **96**, 4168 (1974). (10) J. J. Mayerle, S. E. Denmark, B. V. DePamphilis, J. A. Ibers, and R. H. Holm,
- (10) S. J. Mayerie, S. E. Derinnark, D. V. Derartiphilis, J. A. Ibers, and H. H. Holm, J. Am. Chem. Soc., 97, 1032 (1975).
 (11) (a) W. A. Eaton and W. Lovenberg in "Iron–Sulfur Proteins", Vol. II, W. Lovenberg, Ed., Academic Press, New York, N.Y., 1973, Chapter 3; (b) W. Lovenberg in "Microbial Iron Metabolism", J. B. Neilands, Ed., Academic Press, New York, N.Y., 1974, Chapter 8.
- (12) (a) J. A. Peterson and M. J. Coon, J. Biol. Chem., 243, 329 (1968); (b) E.
- T. Lode and M. J. Coon, *ibid.*, **246**, 791 (1971). (13) W. D. Phillips, M. Poe, J. F. Weiher, C. C. McDonald, and W. Lovenberg, *Nature (London)*, **227**, 574 (1970).
- (14) (a) W. Lovenberg and B. E. Sobel, Proc. Natl. Acad. Sci. U.S.A., 54, 193 (1965); (b) W. Lovenberg and W. M. Williams, Biochemistry, 8, 141 (1969).
- (15) (a) W. A. Eaton and W. Lovenberg, J. Am. Chem. Soc., 92, 7195 (1970); (b) W. A. Eaton, G. Palmer, J. A. Fee, T. Kimura, and W. Lovenberg, Proc. Natl. Acad. Sci. U.S.A., 68, 3015 (1971)
- (16) D. D. Ulmer, B. Holmquist, and B. L. Vallee, Biochem. Biophys. Res. Commun., 51, 1054 (1973). (17) (a) J. Peisach, W. E. Blumberg, E. T. Lode, and M. J. Coon, *J. Biol. Chem.*,
- 246, 5877 (1971); (b) W. E. Blumberg and J. Peisach, Ann. N.Y. Acad. Sci., 222, 539 (1973)
- (18) (a) K. K. Rao, M. C. W. Evans, R. Cammack, D. O. Hall, C. L. Thompson, P. J. Jackson, and C. E. Johnson, *Biochem. J.*, 1**29**, 1063 (1972); (b) C. L. Thompson, C. E. Johnson, D. P. E. Dickson, R. Cammack, D. O. Hall, U. Weser, and K. K. Rao, ibid., 139, 97 (1974).
- (19) (a) K. D. Watenpaugh, L. C. Sieker, J. R. Herriott, and L. H. Jensen, Acta Crystallogr., Sect. B, 29, 943 (1973); (b) L. H. Jensen in "Iron-Sulfur Pro-teins", Vol. II, W. Lovenberg, Ed., Academic Press, New York, N.Y., 1973, Chapter 4.
- (20) (a) A. Davison and E. S. Switkes, Inorg. Chem., 10, 837 (1971); (b) A. Davison and D. L. Reger, ibid., 10, 1967 (1971).
- (21) J. R. Anglin and A. Davison, Inorg. Chem., 14, 234 (1975).
- (22) D. Coucouvanis, D. G. Holah, and F. J. Hollander, Inorg. Chem., 14, 2657 (1975).
- (23) D. G. Hotah and D. Coucouvanis, J. Am. Chem. Soc., 97, 6917 (1975).
- (24) M. R. Churchill and J. Wormald, *Inorg. Chem.*, 10, 1778 (1971).
 (25) An x-ray diffraction study of (Ph₄P)₂[Fe(SPh)₄] has established a distorted tetrahedral structure of the anion: D. Coucouvanis, D. Swenson, N. C. J. Am. Chem. Soc., 98, 5721 (1976).
- (26) R. W. Lane, J. A. Ibers, R. B. Frankel, and R. H. Holm, Proc. Natl. Acad. Sci. U.S.A., 72, 2868 (1975).
- (27) N. S. Gill and F. B. Taylor, Inorg. Synth., 9, 136 (1967)
- (28) S. J. La Piaca and J. A. Ibers, Acta Crystallogr., 18, 511 (1965).
 (29) See the paragraph regarding supplementary material at the end of this
- article.
- (30) For a review, cf. C. A. McAuliffe and S. G. Murray, Inorg. Chim. Acta Rev., 6, 103 (1972).
- (31) K. S. Murray and P. J. Newman, Aust. J. Chem., 28, 773 (1975).
 (32) S. Jeannin, Y. Jeannin, and G. Lavigne, J. Organomet. Chem., 40, 187

Acknowledgments. This research was supported at the Departments of Chemistry, M.I.T. and Stanford University, by 98

- (33) (a) M. R. Snow and J. A. Ibers, Inorg. Chem., 12, 249 (1973); (b) T. Herskovitz, B. V. DePamphilis, W. O. Gillum, and R. H. Holm, ibid., 14, 1426 (1975).
- (34) A similar lateral dimer structure has been established for the nonthiolate Fe(II) complex [Fe(S₂CNEI₂)₂], whose nonbridging bite distance is ~2.9 Å compared to 3.16 Å in [Fe₂(edt)₄]^{2-:33a} O. A. Ileperuma and R. D. Feltham, *Inorg. Chem.*, **14**, 3042 (1975).
- (35) Y. Sugiura, M. Kunishima, and H. Tanaka, Biochem. Biophys. Res. Commun., **48**, 1400 (1972). (36) (a) Y. Sugiura and H. Tanaka, *Biochem. Biophys. Res. Commun.*, **46**, 335
- (1972); (b) Y. Sugiura, M. Kunishima, H. Tanaka, and H. H. Dearman, J. Inorg. Nucl. Chem., 37, 1511 (1975).
- (a) Because space group Pn21a contains glide planes, the unit cell contains (37)both enantiomers of each cation and anion, contrary to an earlier statement.²⁶ We thank Professor J. H. Enemark for pointing out this discrepancy. (b) A referee has raised the possibility that the crystal used for the structural determination may have contained some proportion of [Fe(S2-o-xyl)2] with partial occupancy of site Y by a Na⁺ counterion. In reply we note that Y is only 1.54 Å from X, an unreasonable distance for such a circumstance. Further, the root-mean-square amplitudes of vibration for the sulfur atoms In both structures (Table V) are comparable; an increase of these values in the $[Fe(S_2-o_xy)]_2]^{2-}$ structure would be expected if it were contaminated by [Fe(S₂-o-xyl)₂]
- (38) E. R. Brown and R. F. Large in "Techniques in Chemistry", Vol. I, Part IIA, A. Weissburger, Ed., Wiley-Interscience, New York, N.Y., 1971, Chapter
- (39) B. V. DePamphilis, B. A. Averill, T. Herskovitz, L. Que, Jr., and R. H. Holm, J. Am. Chem. Soc., 96, 4159 (1974).
 (40) C. L. Hill, J. Renaud, R. H. Holm, and L. E. Mortenson, J. Am. Chem. Soc.,
- submitted for publication
- (41) W. M. Relff, I. E. Grey, A. Fan, Z. Ellezer, and H. Steinfink, J. Solid State Chem., 13, 32 (1975).
- (42) A. Kostikas, V. Petrouleas, A. Simopoulos, D. Coucouvanis, and D. G. Holah, Chem. Phys. Lett., 38, 582 (1976)
- (43) R. L. Collins, J. Chem. Phys., 42, 1072 (1965).
- (44) J. R. Gabriel and S. L. Ruby, Nucl. Instrum. Methods, 36, 23 (1965)
- (45) W. Marshall and C. E. Johnson, J. Phys. Radium, 23, 733 (1962).
 (46) While quoting the approximate value Δ ~ 850 cm⁻¹ (used In Figure 7), Eaton and Lovenberg^{11a} point out that their estimate of Δ ranges from 700 to 1100 cm
- J. V. Pivnichny and H. H. Brintzinger, *Inorg. Chem.*, **12**, 2839 (1973).
 L. Que, Jr., R. H. Holm, and L. E. Mortenson, *J. Am. Chem. Soc.*, **97**, 463 (48)(1975); W. O. Gillum, L. E. Mortenson, J.-S. Chen, and R. H. Holm, J. Am. Chem. Soc., in press.
- (49) J. G. Norman, Jr., and S. C. Jackels, J. Am. Chem. Soc., 97, 3833 (1975).
- (50) A brief discussion of Jørgensen's optical electronegativity concept as applied to the charge-transfer spectra of Rd_{red} and Rd_{ox} is given elsewhere: G. Palmer in "Iron-Sulfur Proteins", Vol. II, W. Lovenberg, Ed., Academic Press, New York, N.Y., 1973, Chapter 8.
- (51) A. B. P. Lever, "Inorganic Electronic Spectroscopy", Elsevier, Amsterdam, 1968, Chapter 9.
- (52) D. L. Leussing and J. Jayne, J. Phys. Chem., 66, 426 (1962).

- (53) W. Hu and S. J. Lippard, J. Am. Chem. Soc., 96, 2366 (1974).
- (54) F. A. Cotton, D. M. L. Goodgame, and M. Goodgame, J. Am. Chem. Soc., 83, 4690 (1961).
- (55) However, the spectrochemical rankings of other, nonthlolate sulfur ligands may be more variable, but are still disposed toward the weak-field portion of the series: C. K. Jørgensen, J. Inorg. Nucl. Chem., 24, 1571 (1962); Inorg. Chim. Acta Rev., 1, 65 (1968).
- (56) As was pointed out by a referee, side chain ligands in combination with other coordinating prosthetic groups may generate ligand fields sufficiently strong to pair spins (e.g., oxidized and reduced cytochrome c)
- (57) G. A. Slack, F. S. Hem. and R. M. Chrenko, Phys. Rev., 152, 376 (1966).
- (58) D. E. Drum and B. L. Vallee, Biochem. Biophys. Res. Commun., 41, 33 (1970); A. J. Sytkowski and B. L. Vallee, Proc. Natl. Acad. Sci. U.S.A., 73, 344 (1976).
- (59) H. Eklund, B. Nordström, E. Zeppezauer, G. Söderlund, I. Ohlsson, T. Bolwe, and C.-I. Brändén, FEBS Lett., 44, 200 (1974).
- (60) D. R. McMillan, R. A. Holwerda, and H. B. Gray, Proc. Natl. Acad. Sci. U.S.A., **71**, 1339 (1974).
- (61) Cf., e.g., E. I. Solomon, P. J. Clendening, H. B. Gray, and F. J. Grunthaner, J. Am. Chem. Soc., 97, 3878 (1975); E. I. Solomon, J. W. Hare, and H. B. Gray, Proc. Natl. Acad. Sci. U.S.A., 73, 1389 (1976).
- (62) Attempts to prepare Cu(II)-S2-o-xyl complexes have thus far yielded as stable products white solids containing Cu(I).
- (63) This complex would presumably be analogous to diamagnetic, structurally characterized [Ni₃(SCH₂CH₂NH₂)₄]²⁺: C.-H. Wei and L. F. Dahl, *Inorg. Chem.*, **9**, 1878 (1970).
- (64) G. A. Barclay, E. M. McPartlin, and N. C. Stephenson, Acta Crystallogr., Sect. B, 25, 1262 (1969); A. C. Villa, A. G. Manfredotti, M. Nardelli, and C. Pelizzi, Chem. Commun., 1322 (1970).
- (65) R. H. Holm and M. J. O'Connor, Prog. Inorg. Chem., 14, 241 (1971)
- (66) M. R. Churchill, J. Cooke, J. P. Fennessey, and J. Wormald, Inorg. Chem., 10, 1031 (1971). (67) B. L. Vallee and R. J. P. Williams, Proc. Natl. Acad. Sci. U.S.A., 59, 498
- (1968)
- (68) R. G. Shulman, P. Eisenberger, W. E. Blumberg, and N. A. Stombaugh, Proc. Natl. Acad. Sci. U.S.A., 72, 4003 (1975).
- (69) D. E. Sayers, E. A. Stern, and J. R. Herriott, J. Chem. Phys., 64, 427 (1976).
- (70) L. E. Bennett, Prog. Inorg. Chem., 18, 1 (1973).
- (71) N. Sutin in "Inorganic Blochemistry", Vol. 2, G. L. Eichhorn, Ed., Elsevier, Amsterdam, 1973, Chapter 19.
- (72) R. J. P. Williams, Inorg. Chim. Acta Rev., 5, 137 (1971 (73) J. W. Lauher and J. A. Ibers, *Inorg. Chem.*, **14**, 348 (1975); T. J. Kisten-macher and G. D. Stucky, *ibid.*, **7**, 2150 (1968); F. A. Cotton and C. A. Murillo, *ibid.*, **14**, 2467 (1975).
- (74) A value of 0.05 Å for *P. aerogenes* Rd_{red}/Rd_{ox} has been estimated from EXAFS analysis.⁶⁸
- (75) C. A. Jacks, L. E. Bennett, W. N. Raymond, and W. Lovenberg, Proc. Natl. Acad. Sci. U.S.A., 71, 1118 (1974).
- (76) Cf., e.g., H. C. Stynes and J. A. Ibers, *Inorg. Chem.*, 10, 2304 (1971), and references cited therein; H. Taube, "electron Transfer Reactions of Complex lons in Solution", Academic Press, New York, N.Y., 1970, Chapter

Phase-Transfer Catalyzed and Two-Phase Reactions of Aromatic Nitro Compounds with Iron Carbonyls

Hervé des Abbayes and Howard Alper*

Contribution from the Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5. Received June 14, 1976

Abstract: The first examples of the application of phase-transfer catalysis to metal carbonyl chemistry are described. Anilines were formed in good to excellent yields by treatment of nitro arenes with triiron dodecacarbonyl, aqueous sodium hydroxide, benzene, and benzyltriethylammonium chloride as the catalyst (room temperature, 0.75-2.0 h). A mechanism is proposed involving HFe₃(CO)₁, as a key intermediate. The reduction of nitro compounds can also be effected using $Fe(CO)_5$ (or $Fe_2(CO)_9$) in place of $Fe_3(CO)_{12}$, but the catalyst is not required. Steric and electronic effects are significantly different in the $Fe_3(CO)_{12}$ and $Fe(CO)_5$ reactions.

There have been many important applications of phasetransfer catalysis in synthetic organic chemistry during the past few years (e.g., carbene reactions).¹ It seemed conceivable to us that the process should also be useful in transition metal organometallic chemistry, particularly for reactions involving anionic species. This paper describes the first application of phase-transfer catalysis to metal carbonyl chemistry.²

Iron carbonyl hydrides [HFe(CO)₄⁻, HFe₃(CO)₁₁⁻] are useful reagents for effecting reductive amination,³⁻⁵ alkylation,^{6,7} hydroacylation,⁸ dehalogenation,⁹ and for reduction of nitroarenes, ^{10,11} Schiff bases, ¹² diazines, ¹² and α , β -unsaturated carbonyls.¹³ As these hydrides can be generated by reaction of the appropriate iron carbonyl with hydroxide ion or methanol, they appeared to be excellent models for testing